小學數(shù)學五年級上冊北師大版《點陣中的規(guī)律》教案(精選7篇)
作為一名教學工作者,通常需要用到教案來輔助教學,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。快來參考教案是怎么寫的吧!以下是小編為大家收集的小學數(shù)學五年級上冊《點陣中的規(guī)律》教案,僅供參考,大家一起來看看吧。
小學數(shù)學五年級上冊《點陣中的規(guī)律》教案 篇1
教學內容:
北師大版小學數(shù)學五年級上冊。(教科書第82、83頁。)
課標分析:
本節(jié)課的主要內容是使學生能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系,發(fā)展學生的歸納與概括的能力,滲透數(shù)學建模的思想,從中感受數(shù)學文化的魅力。
教材分析:
本課的內容是獨立成篇的,這節(jié)課與本單元的其它知識之間沒有必然的前后聯(lián)系,是一節(jié)相對獨立的數(shù)學活動課。教材提供的學習內容對于五年級的學生來說比較容易。但本課知識雖然簡單,卻是幫助學生建立數(shù)學模型的好題材,即是讓學生能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,又是讓學生體會到圖形與數(shù)的聯(lián)系,發(fā)展學生歸納與概括能力,滲透數(shù)學建模思想。
學生分析:
1、學生的知識基礎
五年級學生在數(shù)的方面,已經認識了自然數(shù)和整數(shù),倍數(shù)因數(shù),奇數(shù)偶數(shù),質數(shù)合數(shù),小數(shù)、分數(shù)等。在形的方面,對長方形、正方形、平行四邊形,三角形,梯形的特征也有了深刻的認識。但是學生對利用圖形研究數(shù),尋找數(shù)和圖形之間的聯(lián)系,還有困難。學生對線圍成的基本圖形有深刻的認識,但是點陣中的幾何圖形,只有點,沒有線,學生要利用自己的想象加以補充和延伸,這對學生來說會感覺比較陌生。
2、學生的能力基礎
學生在一年級學過找規(guī)律填數(shù),二年級學過按規(guī)律接著畫,四年級學過探索圖形的規(guī)律。因此五年級學生具備一定的觀察能力、抽象概括能力、邏輯推理能力等。然而小學生的思維特點是從具體形象思維逐步向抽象思維過渡,這種抽象邏輯思維在很大程度上仍然依靠感性經驗的支持。而這節(jié)課完全是數(shù)學思想、數(shù)學方法的教學,極為抽象,因此對部分學生來說還是會感覺有點困難。
教學目標:
1.能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系。
2、培養(yǎng)學生推理、觀察、歸納和概括能力。
3、感受“數(shù)形結合”的神奇之美,并獲得“我能發(fā)現(xiàn)”之成功體驗。
教學重點:
探究發(fā)現(xiàn)點陣中的規(guī)律。
教學難點:
總結概括規(guī)律。
教學準備:
課件,五子棋,磁扣等。
教法學法:
1、教師教學方法:讓學生獨立或合作式探究規(guī)律,鼓勵學生有自己的發(fā)現(xiàn)、有不同的發(fā)現(xiàn)。盡量減少教師的介入
2、學生學習方法:大膽讓學生畫一畫、擺一擺、算一算,讓學生多角度探究規(guī)律,充分感受美圖美思
教學過程:
一、展示圖片,引出課題
1、展示圖片,(投影)今天老師給大家?guī)砹藥追鶊D片,請同學們欣賞。
師:這些圖片有什么特點?
生:好像都是由點組成的。
師:是呀,不要小看了這樣一個小小的點,點是幾何圖形中最基本的圖形,許許多多的點按照一定的規(guī)律排列起來就構成了點陣。
早在2000多年前,古希臘的數(shù)學家們就是從這樣一個小小的點開始研究,并且發(fā)現(xiàn)了有許多個這樣的點組成的點陣中許多有趣的規(guī)律。這節(jié)課,我們也來嘗試研究點陣的規(guī)律。(板書課題——點陣中的規(guī)律)。
二、細心觀察,探求規(guī)律
1、出示正方形點陣,探索正方形點陣的規(guī)律。
A、第一個規(guī)律。
師:(出示點陣),這就是他們當時研究過的一組點陣,請大家用數(shù)學的眼光仔細觀察,思考這樣兩個問題:(出示思考題)(指名讀)
(1)每個點陣可以看成什么圖形?
(2)每個點陣中分別有多少個點?你是怎樣觀察出來的`?
小組討論,指名回答。
師:每個點陣可以看成什么圖形?(正方形),同意嗎?
生1:我認為第一個點陣不能看成一個正方形,是一個圓形。
師:其他同學也同意他的觀點嗎?
師:其實第一個點陣雖然只是一個點,但是我們可以把它看成邊長是1的小正方形。是嗎?
師:每個點陣中分別有多少個點?
生2:第一個點陣有1個點,第二個點陣有4個點,第三個點陣有9個點,第四個點陣有16個點。
師:你能說一說你是怎么得到每個點陣中點的個數(shù)的嗎?你是怎樣觀察出來的?
生:我是通過數(shù)出每個點陣中點的個數(shù)得到的。
師:誰還有不同的方法?有沒有更快一些的方法?
生:我是通過計算得到的。
師:能具體說一說是怎樣通過計算得到的嗎?
生:第一個點陣有1個點;第二個點陣橫著看,每行有2個點,有2行,共有2×2=4個點;第三個點陣每行有3個點,有3行,共有3×3=9個點;第4個點陣每行有4個點,有4行,共有4×4=16個點。
師:同學們現(xiàn)在你們發(fā)現(xiàn)正方形點陣的規(guī)律了嗎?點陣的序號與它的點的個數(shù)算式有沒有關系?有什么關系?如果用字母n來表示點陣的序號,那么正方形點陣點的個數(shù)是多少呢?
生:我們分析了前面幾個點陣圖的特點,認為在這個點陣圖中,點的個數(shù)的規(guī)律是:1×1,2×2,3×3,4×4,也就是n×n 師:這種數(shù)法真是又快又方便!照這樣下去,能不能根據你們的發(fā)現(xiàn)畫出第5個點陣呢?(學生畫,指名說,教師投影顯示)
師:第6個呢、第7個第100個點陣的點的個數(shù)都能瞬間求出來。也就是說:“是第幾個點陣,就用幾乘幾”(板書)
師:如果一個點陣它有81個點,它應該是第幾個點陣?每行有幾個點?每列有幾個點?
(這個畫點陣的過程雖然簡單,但體現(xiàn)了由數(shù)——形的轉換。培養(yǎng)了學生主動進行數(shù)形轉換的意識。)
B、第2個規(guī)律
師:剛才我們是怎樣觀察的?(橫著數(shù)和豎著數(shù))
正方形點陣還有沒有其它的觀察方法呢?能不能換個角度觀察?
“斜著看又可以得到什么新的與序號有關的算式呢?請同學們獨立思考,寫出算式,然后匯報。”(投影)
觀察并思考
(1)分別用算式表示每個點陣點的個數(shù)。
(2)你發(fā)現(xiàn)了什么規(guī)律?
學生匯報,教師板書
第1個:1=1
第2個:1+2+1=4
第3個:1+2+3+2+1=9
第4個:1+2+3+4+3+2+1=16
第N個:1+2+3+N++3+2+1
師:“誰發(fā)現(xiàn)什么規(guī)律呢?”
生:“如第2個點陣就從1加到2再加回來,第3個點陣就從1加到3再加回來,第4個點陣就從1加到4再加回來”。
師小結:“第幾個點陣就從1連續(xù)加到幾,再反過來加回到1”這個規(guī)律。
剛才是橫豎數(shù),“第幾個點陣就是幾乘幾”。
C、第3個規(guī)律
師:剛才同學們發(fā)現(xiàn)了點陣中的兩個規(guī)律,這些點陣中還有其它的規(guī)律嗎?還能換個角度去思考嗎?(出示教材第82頁第(3)題圖),老師把第5個點陣中的點用五條折線劃分,這樣劃分后,看看你又有什么新發(fā)現(xiàn)呢?
師:我們把第1個折現(xiàn)內的點看成第一個點陣,該用什么算式表示?其他呢?小組討論,列出算式,全班匯報。
小組代表匯報。
生:(總結)每用折線畫一次后,點陣中的個數(shù)是
1=1 1+3=4 1+3+5=9 1+3+5+7=16
師:(總結)這樣劃分后,點陣中的規(guī)律是:1,1+3,1+3+5,1+3+5+7,
師:第1個點陣是1,第2個點陣是在第1個的基礎上多3個,第3個點陣呢? 有的學生可能說:“這次都是奇數(shù)相加。”
教師問:“從奇數(shù)幾加起?加幾個?是隨意的幾個奇數(shù)相加嗎?”
通過這樣的提問,引導學生說出“第幾個點陣就從1開始加幾個連續(xù)奇數(shù)”。
師:真了不起。這種劃分方法,我們可以叫做“折線劃分法”。
第幾個點陣,就是從1開始加幾個連續(xù)奇數(shù)。
通過研究點陣,我們發(fā)現(xiàn)這組正方形點陣中有很多規(guī)律。這3種規(guī)律是從不同的角度觀察出來的,無論你從什么角度去觀察,得到的結論都與它的序號有關系,所以我們以后再研究點陣的時候,都要想一想跟它的序號有什么關系,這樣才能更簡單。
(在這里,教師不是讓學生發(fā)現(xiàn)規(guī)律就結束了,而是讓學生活學活用這些規(guī)律。讓學生體會到我們剛才發(fā)現(xiàn)的正方形點陣中的規(guī)律,其實就是一個完全平方數(shù)的規(guī)律,它可以應用到所有的完全平方數(shù)。)
剛才這3種方法,哪一種更簡便?你更喜歡哪一種?那么我們再研究正方形點陣的時候,用哪一種更簡便?但點陣是豐富的,多變的,不僅只有正方形點陣,還有其他圖形的點陣。這時,我們就需要開拓自己的思維,多想一些方法來研究它們與序號之間的關系。有沒有興趣再研究其他圖形的點陣?
(在剛才的新課教學的環(huán)節(jié)中,學生經歷了觀察、思考、合作、交流、表達等過程,培養(yǎng)了觀察能力、想象能力、概括能力。并深刻體驗到數(shù)與形,數(shù)與式,式與式之間的聯(lián)系,培養(yǎng)學生利用數(shù)形結合的思想來解決問題的意識和能力。)
三、牛刀小試
1. (課件出示教材第83頁試一試第1題)師:你們能用剛學過的幾種方法中發(fā)現(xiàn)這個點陣的規(guī)律嗎?
生:豎排×橫排:1×2,2×3,3×4,4×5 師:與它們的序號有什么關系?都是序號和它后面相鄰的兩個自然數(shù)的乘積。在點子圖上畫出第5個點陣。
小組交流,研究:上面的點陣還有其他的規(guī)律嗎?
生:(1)兩個兩個數(shù):1×2,3×2,6×2,10×2,15×2 (2)斜著一層一層數(shù):1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.師:同學們真善于發(fā)現(xiàn)和創(chuàng)造規(guī)律。除了正方形和長方形點陣外,還有很多其它形狀的點陣,我們研究他們,同樣會有很大的收獲。看看,這是一組什么形狀的點陣?(課件出示試一試第2題三角形點陣圖)你能用一層一層數(shù)的方法,表示你發(fā)現(xiàn)的規(guī)律嗎?展示,根據你發(fā)現(xiàn)的規(guī)律畫出第五個點陣。
生;1,1+2,1+2+3,1+2+3+4
師:其他同學看明白了嗎?有什么規(guī)律?(第幾個點陣,就從1加到幾。)
上面的點陣還有其他的規(guī)律嗎?學生思考,指名說。(投影顯示)
四、興趣優(yōu)在:(課件出示教材第83頁練一練)
第2題:按規(guī)律畫出下一個圖形。
師:這道題就象梅花樁,指第一個,走了幾個梅花樁?
生:3個。
師:指第二個,共走了幾個梅花,增加幾個樁?
生:7個,增加了4個。
師:指第三個,共走了幾個梅花樁,又增加了幾個樁?
生:13個,又增加了6個。
師:如果再往下走,你們想想會再多走幾個樁,你能寫出算式嗎?寫完算式,學生自己獨立畫出點陣。小組合作,討論點陣中蘊涵的規(guī)律,然后匯報交流。
生:交流,探索總結規(guī)律
(這一題與前幾個題區(qū)別很大,前幾題的點陣可以看作規(guī)則的幾何圖形,這一題點陣圖不規(guī)則,要畫出下一個圖形,既要抓住數(shù)量的變化,又要抓住形狀的變化。進一步體會到數(shù)形結合的重要。)
五、知識拓展
欣賞生活中的點陣圖片。思考:生活中有哪些地方運用點陣的知識?(座位、站排做操、樓房的窗子等。
師:點陣不只是點,很多有規(guī)律的排列,都可以看成點陣。
投影跳棋、圍棋、十字繡、花壇里的鮮花、水晶燈等圖片。
六、課堂小結
師:同學們今天學習了這么多的點陣,有沒有收獲,哪些收獲?
七、課后操作
自創(chuàng)新的點陣圖,并說出點陣規(guī)律。
小學數(shù)學五年級上冊《點陣中的規(guī)律》教案 篇2
教材分析:
教材開頭短短兩句話,讀來一種研究數(shù)學的使命感油然而生,在這濃濃的數(shù)學味道里,學生開始了對點陣規(guī)律的發(fā)現(xiàn)之旅。教材首先給出了最為典型的正方形點陣,通過對其規(guī)律的探究,建立起點陣與數(shù)、與算式之間的聯(lián)系。并且從不同角度,不同的劃分方法中發(fā)現(xiàn)不同的規(guī)律,從而讓學生體會到點陣研究數(shù)的形式是多樣的,滲透解決問題的策略多樣化。在此基礎上再研究長方形、三角形、以及特殊形狀的點陣。通過這些數(shù)學素材,引導學生探索規(guī)律,歸納概括,建立模式。從一組點陣的變化中,抽象概括出規(guī)律的本質,并加以歸納推理。因此點陣中的規(guī)律這個內容是培養(yǎng)學生抽象概括、歸納推理的能力的最好素材。教材在學生概括規(guī)律,歸納推理出下一個點陣的點數(shù)后,又讓學生畫出這個點陣圖,這是一個從數(shù)到形的過程。充分體現(xiàn)了數(shù)形結合,數(shù)形轉化的思想方法。
學情分析:
五年級學生在數(shù)的方面,已經認識了自然數(shù)和整數(shù),倍數(shù)因數(shù),奇數(shù)偶數(shù),質數(shù)合數(shù),小數(shù)、分數(shù)等。在形的方面,對長方形、正方形、平行四邊形,三角形,梯形的特征也有了深刻的認識。但是學生對利用圖形研究數(shù),尋找數(shù)和圖形之間的聯(lián)系,還有困難。學生對線圍成的基本圖形有深刻的認識,但是點陣中的幾何圖形,只有點,沒有線,學生要利用自己的想象加以補充和延伸,這對學生來說會感覺比較陌生。五年級學生具備一定的觀察能力、抽象概括能力、邏輯推理能力,具備用數(shù)形結合的方法分析問題的基礎。同時學生對新奇的事物感興趣,點陣對于學生是完全新鮮的,因此學生研究的興趣比較濃厚,課堂的注意力會比較集中。但這一課的抽象性也會使學生的興趣停留在短暫的直接興趣,很難轉化為對數(shù)學研究的間接興趣。因此我們在教學中根據小學生的心理年齡特點,將這些單調靜止的點陣圖加以生活化、趣味化、動態(tài)化。
教學目標:
知識與技能:能觀察發(fā)現(xiàn)點陣中的規(guī)律,體會圖形與數(shù)的聯(lián)系。
過程與方法:發(fā)展歸納和概括的能力。
情感態(tài)度與價值觀:感受數(shù)形結合的神奇之美,并獲得我能發(fā)現(xiàn)之成功體驗。
教學重點:
探究發(fā)現(xiàn)點陣中的規(guī)律。
教學難點:
獨立發(fā)現(xiàn)同一點陣中不同的規(guī)律。
教學過程:
(教學過程的表述不必詳細到將教師、學生的所有對話、活動逐字記錄,但是應該把主要教學環(huán)節(jié)、教師活動、學生活動、設計意圖很清楚地再現(xiàn)。)
一、創(chuàng)設問題情境
指導學生觀察所提供圖
形的基本形狀。
1、提供的四個圖形的均是三角形,第一個圖形除外。
板書:1 點字的個數(shù)是如何增加的?
2、觀察四個圖形均是正方形(第一個除外)你能寫出算式嗎?
11 22 33 44 □□
3、第三、四組的四個圖形請示去自己去探索,發(fā)現(xiàn)規(guī)律。
觀察圖形,思考,反饋。
學生探索、發(fā)現(xiàn)。
設計意圖:隨著點陣圖的依次出現(xiàn),學生的思維逐漸活躍,當?shù)谌齻點陣圖出現(xiàn)的時候,學生不用數(shù),已經忍不住地說出了點數(shù)。說明學生已經發(fā)現(xiàn)了這組正方形點陣中的規(guī)律。但這時,教師沒有急于讓學生發(fā)表自己的看法,而是給學生留出了完善自己想法的時間,同時也暗示學生:規(guī)律的呈現(xiàn)不能依靠一個或幾個圖形來歸納,應該有耐心地繼續(xù)自己的觀察活動。
二、小組合作探究。
指導學生觀察前后圖
學生觀察提供的第一組點字圖,交流點字的個數(shù)是如何增加的,然后用算式表示出來。
學生觀察第二組四個圖形,點字的個數(shù)有什么變化,
在小組內說一說,然后用算式表示出來。
學生獨立觀察思考這兩組圖形點不變化的情況,有什么規(guī)律。
引導學生觀察所給圖形的基本形狀及點字變化情況。
學生觀察、思考、匯報。學生談體會
設計意圖:讓學生尋找正方形點陣的不同劃分方法,把教材分散處理的關于正方形點陣的不同劃分方法集中探究,便于學生思維的延續(xù)和拓展,不至于出現(xiàn)思維上的斷層。這樣設計既符合學生的探究心理和學習習慣,又給學生提供了自主探究的空間,體現(xiàn)了學生學習的自主性,還用另一種方式解讀了練一練中的第一題。培養(yǎng)了學生從不同的角度去發(fā)現(xiàn)問題,總結概括規(guī)律的能力。
三、匯報交流質疑問難。
學生通過觀察前后圖形中點的變化情況,從而推導出后續(xù)圖形點的數(shù)量。引導學生觀察前后圖形點的個數(shù)是如何增加的。
1、點字圖是三角形的點字個數(shù)后一層比前一層多。
2、正文形、長方形點子數(shù)是成倍增加。
3、第(4)組圖點子數(shù)是怎樣變化的。
4、指導學生觀察前后的算式。
僅觀察圖形并不能直接發(fā)現(xiàn)規(guī)律,并與圖形對應起來。學生觀察讀圖,思考。
議論交流。
設計意圖:學生到此,已經很輕松地用語言表述出自己的想法:這樣的三角形點陣的點數(shù)是從1開始的連續(xù)自然數(shù)的和。而對于第四種劃分方法,是我沒有預想到的。有一個孩子卻用非常強烈地要求,表達了自己的這種劃分方法,并且說出了這個算式依次遞加4的規(guī)律。我真的很慶幸給了他一個機會,他用如此精彩的回答回報了我,也許課堂教學永遠的魅力就在于這預設外的驚喜吧。
四、練習鞏固。
第1題,有兩小題都是根據圖形的變化的特點,推理出后續(xù)的圖形。
第二題,是觀察圖形排列的變化
學生先獨立思考:各圖形點子個數(shù)是如何增加的`,然后小組內交流,最后全班進行交流。
學生補充完算式,找出規(guī)律再寫出一個算式來。
先讓學生獨立思考,然后組織學生進行交流。
通過這樣的觀察,也能知道后面圖形排列的特點,從而計算出后面圖形點的數(shù)量。
根據圖形變化發(fā)現(xiàn)這一變化規(guī)律。
學生獨立思考后小組交流。
學生觀察并找出其中規(guī)律。
設計意圖:在這里不需要學生說出多么專業(yè)的、深奧的數(shù)學方法,只是引導學生對自己探究性學習方法的一個總結,盡管語言可能不夠簡練,總結不夠到位,只要學生是用自己的語言在表述自己的想法,就是對學生思維訓練層次的一個提升,一種飛越。
五、總結概括
這節(jié)課你有什么收獲?講給同學們聽聽。
六、作業(yè)
1、練一練2題
2、你在生活中那里發(fā)現(xiàn)過有規(guī)律的東西?用你喜歡的方法記錄表示它們的規(guī)律。
學生思考,交談,總結。
設計意圖:把學生的課堂學習延伸到課外,鏈接到學生已有的相關生活經驗,使得原本陌生的數(shù)學知識與學生的日常生活自然對接,體現(xiàn)了數(shù)學與生活的密切聯(lián)系。學生課后的自主設計作業(yè),給了學生極大的創(chuàng)造空間,真正體現(xiàn)數(shù)學來源于生活,又應用于生活。
板書設計:
點陣中的規(guī)律
正方形數(shù)、相同數(shù)
連續(xù)奇數(shù)
連續(xù)自然數(shù)倒加
1 =11 4 =22 =1+3 =1+2+1
9 =33 =1+3+5 =1+2+3+2+1
16 =44 =1+3+5+7 =1+2+3+4+3+2+1
25 =55 =1+3+5+7+9 =1+2+3+4+5+4+3+2+1
教學反思:
在課堂實踐中,給了學生極大的探索自由,學生的思維非常活躍,對正方形點陣進行了多種角度的分析,深刻體悟到正方形數(shù)的奧妙,也獲得了借助點陣分析數(shù)的方法。相信他們經過思考已經有了自主發(fā)現(xiàn)的能力。課后,定能運用學到的研究方法去獨立地研究發(fā)現(xiàn)各種數(shù)與形的規(guī)律。
小學數(shù)學五年級上冊《點陣中的規(guī)律》教案 篇3
教學內容:
北師大版小學數(shù)學五年級上冊第82——83頁的內容。
教學目標:
1、結合具體的圖形,明確什么是“點陣”,了解點陣的基本知識。
2、能在具體的觀察活動中,發(fā)現(xiàn)點陣中隱藏的規(guī)律,體會圖形與數(shù)的聯(lián)系。
3、培養(yǎng)學生觀察、概括與推理的能力。
4、了解數(shù)學發(fā)展的歷史,感受數(shù)學文化的魅力。
教學重點:
通過觀察活動,引導學生探索發(fā)現(xiàn)“點陣”中隱藏的規(guī)律。
教學難點:
能從不同的角度觀察到點陣圖形的不同排列規(guī)律,并能把觀察到的規(guī)律用算式表示出來。
教學準備:
(師)多媒體課件;(生)彩筆。
教學過程:
一、談話引入
(老師在黑板上畫點)今天給大家請來了一位圖形朋友——點,不要小看了這個小小的點,早在2000多年前,古希臘的數(shù)學家們就是從這樣一個小小的點開始研究,發(fā)現(xiàn)了由許多個這樣的點組成的點子圖形中的規(guī)律,還給這些圖形取了一個好聽的名字,叫點陣。同學們想不想過一把當數(shù)學家的癮,自己來尋找這些規(guī)律?今天,我們就一起來探究點陣中隱含的規(guī)律。(板書課題:點陣中的規(guī)律)
二、探究正方形點陣中的規(guī)律
1、探究正方形點陣的規(guī)律。
(1)我們一起來看看數(shù)學家們當年研究的點陣圖,邊看邊說出各個點陣的點子數(shù)。
教師依次出示前四個正方形點陣圖,并逐步引導學生想像、猜測:下一個點陣圖會是什么樣子呢?
(隨著點陣圖的依次出現(xiàn),學生的思維逐漸活躍,當?shù)谌齻點陣圖出現(xiàn)的時候,學生已經忍不住地說出了點數(shù)。說明學生已經發(fā)現(xiàn)了正方形點陣中的規(guī)律。但這時,教師沒有急于讓學生發(fā)表自己的看法,而是給學生留出了完善自己想法的時間,同時也暗示學生:規(guī)律的呈現(xiàn)不能依靠一個或幾個圖形來歸納,應該有耐心地繼續(xù)自己的觀察活動。)
(2)除了能說出各個點陣的點數(shù)之外,仔細觀察點陣圖:你還有什么其它的發(fā)現(xiàn)?
(學生能夠發(fā)現(xiàn)各個點陣的形狀是正方形的,還能用1×1、2×2、3×3、4×4這樣的算式來表示每個點陣的點數(shù)。)
(3)根據剛才發(fā)現(xiàn)的規(guī)律,想:第五個點陣是什么樣子,獨立畫出來,并用算式表示點數(shù)。
(學生獨立畫出第五個5×5的點陣圖)
(4)思考:照這樣的規(guī)律繼續(xù)畫下去,第100個點陣的點數(shù)如何用算式來表示?第n個呢?
(結合發(fā)現(xiàn)的規(guī)律,引導學生逐步完善自己的想法,建立總結正方形點陣規(guī)律的模型。)
小組討論:你覺得每個正方形點陣的點子總數(shù)與什么有關系?
(學會用簡單的語言表述自己的想法,使得初步的形象感知得到提升)
小結:每個正方形點陣的點子總數(shù)可以看作是一個相同數(shù)字相乘的積,這個數(shù)字與點陣的序號有關,與每個正方形點陣每排的點子數(shù)也有關系。
2、剛才我們研究了一組正方形點陣中隱含的規(guī)律,那么對于同一個點陣來說,如果劃分的方法不同,所呈現(xiàn)的規(guī)律也就不同。
(1)請大家仔細觀察第五個正方形點陣中點的劃分方法,你能發(fā)現(xiàn)什么規(guī)律?
學生會有如下發(fā)現(xiàn)
①是用折線劃分開的。
②每條線內的點分別是1、3、5、7、9。
③這個正方形點陣的點數(shù)就可以表示為:1+3+5+7+9=25。
(2)如果把每條線所包圍的點子數(shù)記下來,如何用算式來表示?
第一條線: 1 = 1;
第二條線: 1+3 = 4;
第三條線: 1+3+5 = 9;
第四條線: 1+3+5+7 = 16;
第五條線: 1+3+5+7+9 = 25;
(3)每條線所包圍的點子數(shù)與前面研究的一組正方形點陣的點子數(shù)有什么關系?(正好是第一到第五個點陣的點子數(shù)。)
(第二、三個問題需要老師引導,學生自己難以發(fā)現(xiàn),尤其是第三個問題,學生很難想到它們和開始時依次出現(xiàn)的幾個正方形點陣的點數(shù)之間的關系。當學生想不到這種聯(lián)系時,是否一定要引導?)
(4)思考:表示這個正方形點陣的點數(shù)的`算式有什么特點?
(這個點陣的點子總數(shù)可以看作是連續(xù)奇數(shù)的和。)
(5)如果按這樣的劃分方法劃分第六個正方形點陣,它的點數(shù)該如何表示?
1+3+5+7+9+11 = 36;
(6)前面老師是把這個5×5的正方形點陣用折線進行了劃分,你們還有哪些不同的劃分的方法?在用算式表示上有什么規(guī)律?
學生的劃分有以下幾種
①橫向劃分:用算式表示為5+5+5+5+5;
②豎向劃分:用算式表示為5+5+5+5+5;
③斜向劃分:用算式表示為1+2+3+4+5+4+3+2+1;
至于前面兩種方法,都可以簡單地表示為:5×5;重點引導學生討論第三種劃分方法,觀察這個算式,你們發(fā)現(xiàn)了什么?
學生的發(fā)現(xiàn)如下
算式里最大的數(shù)是5;
從1開始加到5再加回到1;
這個算式是兩邊對稱的;
這個點陣的點數(shù)是中間那個數(shù)字5乘5的積;
教師引導:照這樣的規(guī)律類推,第六個正方形點陣的點數(shù)如何表示?第9個呢?第n個呢?
(在這里把尋找不同劃分方法的任務交給學生,既是學生前面探究過程思維的延續(xù),又體現(xiàn)了學生學習的自主性,還用另一種方式解讀了“練一練”中的第一題。培養(yǎng)了學生從不同的角度去發(fā)現(xiàn)問題,總結概括規(guī)律的能力。)
三、延伸應用,形成策略
1、除了我們剛才研究的正方形點陣,請大家猜猜看,還會有什么形狀的點陣呢?
(學生列舉了長方形點陣、三角形點陣、圓形點陣、橢圓形點陣等等。)
2、請大家嘗試運用前面學會的方法探究長方形點陣規(guī)律。
(1)小組合作研究:如何用算式表示每個長方形點陣的點子數(shù)?
學生通過討論很快達成共識
1×2;2×3;3×4;4×5;
(2)請你獨立畫出第五個長方形點陣并用算式表示出點數(shù)。
(學生獨立畫圖并寫出算式,互相交流。)
算式表示為:5×6;
(3)思考討論:你們覺得自己所寫的算式中的數(shù)字與圖形中的點子之間有什么關系?
(學生的發(fā)現(xiàn)為:乘法算式中的第二個因數(shù)總是比第一個因數(shù)多 1,第一個因數(shù)是長方形點陣的豎排點數(shù),第二個因數(shù)是長方形點陣的橫排點數(shù)。并沒有發(fā)現(xiàn)第一個因數(shù)與點陣序號間的關系,因此,當要求他們寫出18個點陣的點數(shù)時,出現(xiàn)了兩種不同的答案:17×18、18×19。在爭論各自的理由時,學生的注意力才聯(lián)系到了點陣的序號與算式的關系,從而確定了正確答案。)
(4)照這樣繼續(xù)寫,你能寫出第n個長方形點陣的點數(shù)嗎?
學生可以很順利地寫出:n×(n+1)。
3、看來對于任何一個點陣,只要我們認真觀察研究,總能發(fā)現(xiàn)其獨特的規(guī)律。在小組內研究三角形點陣中的規(guī)律,要求
(1)個人思考活動:觀察給出的四個三角形點陣的規(guī)律,畫出第五個三角形點陣。
(2)小組討論:對自己畫出的第五個三角形點陣進行劃分,你能想到哪些不同的劃分方法?分別用算式表示點數(shù)。
(學生活動)
全班交流
劃分一:橫向劃分,1+2+3+4+5=15;
劃分二:豎向劃分,1+2+3+4+5=15;
劃分三:斜向劃分,1+2+3+4+5=15;
劃分四:折線劃分,1+5+9=15;
(對于前面的三種劃分方法,都在我的預設之內,學生到此,已經很輕松地用語言表述出自己的想法:這樣的三角形點陣的點數(shù)是從1開始的連續(xù)自然數(shù)的和。而對于第四種劃分方法,是我沒有想到的。有一個孩子卻用非常強烈地要求,表達了自己的這種劃分方法,并且說出了這個算式依次遞加4的規(guī)律。)
4、同學們真了起!真正具有未來數(shù)學家的風范,用自己的聰明才智,發(fā)現(xiàn)并總結了各個不同的點陣圖中隱藏的規(guī)律。那么你覺得應該從哪些方面來探究點陣的規(guī)律?
學生交流
仔細觀察點陣的形狀;
數(shù)清每一行的點子數(shù);
看清前后兩個點陣的變化……
(在這里不需要學生說出多么專業(yè)的、深奧的數(shù)學原理,只是引導學生對自己探究性學習方法的一個總結,盡管語言可能不夠簡練,總結不夠到位,只要學生用自己的語言在表述,就是對學生思維訓練的一個提升,一種飛越。)
四、課堂總結
1、點陣的知識在生活中有著廣泛的應用,比如北京奧運會開幕式上的“擊缶表演”、“太極表演”等,都是把一個人看作了一點,來排列有規(guī)律的隊形。你還知道什么地方運用了點陣的相關知識?
五子棋、閱兵式的方隊、節(jié)日的花壇……
2、課后繼續(xù)搜集點陣的相關資料,下節(jié)課繼續(xù)交流。
(在這里,把學生的課堂學習延伸到生活,鏈接到學生已有的相關生活經驗,然后讓學生在生活中繼續(xù)尋找哪里用到點陣的知識,體現(xiàn)了數(shù)學與生活的密切聯(lián)系,數(shù)學來源于生活,又應用于生活。)
小學數(shù)學五年級上冊《點陣中的規(guī)律》教案 篇4
教學內容:北師大版五上第五單元《點陣中的規(guī)律》P82-83
教學目標:
1、在活動中,通過觀察前后圖形中點的變化規(guī)律,推理得出后續(xù)圖形中點的數(shù)量,體會到圖形與數(shù)的聯(lián)系,感受數(shù)學均衡美。
2、培養(yǎng)學生推理、觀察、概括能力。
教學重點:引導學生發(fā)現(xiàn)與概括規(guī)律。
教學難點:概括規(guī)律。
教學過程:
一、認識點陣:
師:同學們,你們都知道自然數(shù)分成奇數(shù)和偶數(shù),最早進行這樣的劃分的數(shù)學家叫畢達哥拉斯,他非常喜歡數(shù)學,他研究數(shù)學可不是為了考試和分數(shù),就是因為喜歡,他對研究數(shù)的特征非常著迷,研究方法也很獨特,他是把數(shù)想象成小石子或小圓點,擺成圖形來研究數(shù)。今天我們也來看看吸引畢達哥拉斯的“點陣”和數(shù)之間到底有什么樣的聯(lián)系。
(板書課題:點陣中的規(guī)律)。
二、研究點陣:
(一)出示點陣,提出問題
師:這就是他當時研究過的一組正方形點陣,有規(guī)律嗎?如果由你來擺這組正方形點陣,你想怎么擺呢?
(二):
其實,點陣是靈活多樣的,每個點陣都有自己的`規(guī)律,只要我們找到規(guī)律,就能推出后面點陣的點數(shù)。借助點陣圖,不同的觀察方法,可以得到不同的數(shù)的規(guī)律,正所謂“遠看成嶺近成峰,遠近高低各不同”。
三、解決點陣問題:
(一)學生觀察課本P83練一練第2題圖,小組內說說他們的規(guī)律,然后小組合作畫出下一個圖形。
(二)匯報,展示,說說規(guī)律。
四、設計點陣:
(一)師:剛才,我們共同研究了一些點陣的規(guī)律。現(xiàn)在,你想自己設計一個點陣嗎?接下來,我們就以小組為單位,開展一個點陣設計大賽,好嗎?
(二)出示要求:
點陣設計大賽:
1、設計時間:5分鐘
2、設計要求:
(1)小組合作,共同設計一幅有規(guī)律的、美觀的點陣圖,畫出前4個點陣,并用算式表示每個點陣的數(shù)量。
(2)每組派代表說明設計的方法及點陣中的規(guī)律,并展示作品。
小組內自由設計,展示。
五、感受點陣:
師:同學們個個都是個出色的小設計師!點陣的運用,在生活中也十分常見。比如:我們常玩的五子棋,圍棋,跳棋都是點陣的運用。一些大型活動的展示標志,廣場上美麗的花壇,由點陣構成的各種圖案等等。可以說,生活中,處處離不開點陣的規(guī)律,離不開數(shù)學的知識。那么,就讓我們用希臘數(shù)學家普洛克拉的一句話結束今天的學習:
哪里有數(shù)學,哪里就有美!數(shù)學美把自然規(guī)律抽象成一幅簡潔準確的圖像。
小學數(shù)學五年級上冊《點陣中的規(guī)律》教案 篇5
教學目標:
1.能在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系;
2.發(fā)展歸納與概括的能力;
3.了解數(shù)學發(fā)展的歷史,感受數(shù)學文化的魅力。
教學重點:
引導學生發(fā)現(xiàn)和概括點陣中的規(guī)律
教學難點:
尋求多種解決問題的方法,體會圖形與數(shù)的聯(lián)系
教學過程:
一、創(chuàng)設情境,生成問題
1.觀察圖形中的規(guī)律
上課前,同學們憑借靈敏的聽力找到了規(guī)律(板書:規(guī)律),現(xiàn)在,老師來考考你們的眼力。請看屏幕,仔細觀察,你能從這一組圖形中發(fā)現(xiàn)規(guī)律嗎?
(出示幻燈片3)3:生觀察說規(guī)律,可提示,師總結)
2.觀察一組數(shù)的規(guī)律。
看來,從不同的角度觀察就會有不同的發(fā)現(xiàn),同學們的眼力真不錯!讓我們繼續(xù),(出示幻燈4)你能從這一組數(shù)中發(fā)現(xiàn)規(guī)律嗎?(1、4、9、16、25 )
如果有困難不能出色完成,那我們今天就來一起研究,從而導入
3.出示點子圖
同學們,這一組數(shù)中其實還隱藏著其他的規(guī)律,只是僅憑觀察這幾個數(shù)不太容易發(fā)現(xiàn)。那我們該怎么辦呢?(生想辦法)
好主意!為了幫助同學們更直觀、更深入地研究這一組數(shù),老師把它們分別畫成了一種最簡單的圖形點(幻燈5出示課本97頁主題圖),如果我們能發(fā)現(xiàn)這幾個點子圖之間的變化規(guī)律,就可以發(fā)現(xiàn)這一組數(shù)中隱藏的規(guī)律了。讓我們馬上開始!
二、探索交流,解決問題
1.滲透不同的觀察方法
(1)仔細觀察,想一想,這幾個點子圖之間究竟有什么變化呢?把你的發(fā)現(xiàn)說給同桌聽;老師并用幻燈片6展示。
(2)指名說怎么觀察的?它們之間有什么變化?
(副板書:橫豎看、斜著看、拐彎看)
(3)設問,那第5個點陣有多少個點?請畫出此圖形。
2.小組探究
同學們都很會思考,從不同的角度觀察到了不同的變化,為了更清晰、更準確的感受這些變化,現(xiàn)在,我們把觀察和動手結合起來,小組合作,選擇一種觀察順序,用線條分一分這幾個圖中的點,然后根據劃分的結果寫出算式來表示這幾個數(shù)。最后想一想,你們從中發(fā)現(xiàn)了什么規(guī)律。聽明白了嗎?好的,現(xiàn)在請小組負責,觀看點子圖,馬上開始你們的合作研究;再次出示幻燈片6。
合作任務
1.選擇一種觀察順序,用線條分一分這幾個圖中的點。
2.根據劃分的.結果寫出算式來表示這幾個數(shù)。
3.想一想,你們從中發(fā)現(xiàn)了什么規(guī)律?
1=()4=()9=()16=()
(1)學生分組探究,師巡視
(2)在展臺上展示交流。(哪個小組先來匯報你們的合作成果?)
①生展示分法、算式和規(guī)律其他組補充總結規(guī)律
②學生說算式師板書
③拓展aa
第5個點子圖是什么樣的,應該是哪個數(shù)?出示片7,用前面的觀察方法,再討論(副板書55)第10個呢?
后兩種:下一個圖形的算式是什么?(副板書下一個圖形的算式)
算一算結果是25嗎?
④(出示幻燈片8)原來問題還可以這樣想:同一問題有不同的思路和解決方法!
3.小結
同學們真是太能干了,不僅發(fā)現(xiàn)了新的規(guī)律,還能用規(guī)律推測出后面的數(shù)。可見,你們不僅聽力和眼力好,研究能力和表達能力更是非常的高。
4.揭示點陣
那么,同學們,在尋找這一組數(shù)的規(guī)律時,是什么幫助了我們?(點子圖)是的,像今天我們用到的這種排列很有規(guī)律的點子圖在數(shù)學上又叫點陣。(板書:點陣中的規(guī)律)
點陣中的規(guī)律可以幫助我們更直觀、更方便的研究一個數(shù)或者一組數(shù)。早在兩千多年前,希臘的數(shù)學家們就已經利用點陣來研究數(shù)了。還有一點一定要告訴你們,剛才我們研究的這組點陣正是當年的數(shù)學家們曾經研究過的,不知不覺中竟然當了一回數(shù)學家,感覺特好吧?這的確是一件值得我們自豪的事情。
三、鞏固應用,內化提高
(一)試一試
怎么樣?同學們?用點陣來研究數(shù)有趣吧?讓我們繼續(xù)這項有趣的研究。
1.觀察下列點陣,你能根據規(guī)律畫出下一個圖形嗎?
請看屏幕,這是一組什么形狀的點陣?仔細觀察這一組點陣,你能根據規(guī)律畫出下一個圖形嗎?(請看試一試,同學們用水彩筆涂出下一個圖形;可出示幻燈片9來檢查學生是否畫的正確)
生畫展示:說明為什么這樣畫?(有不同的想法嗎)
2.下面的點陣分別代表了哪個數(shù)?請你用一組有規(guī)律的算式表示這幾個數(shù)。
這是一組什么形狀的點陣?下面的點陣分別代表了哪個數(shù)?你能用一組有規(guī)律的算式表示這幾個數(shù)嗎?(請看試一試,出示幻燈片10,我們比一比,哪位同學寫的又對又快。)
生做展示算式拓展下一個,你能畫出地5個圖形,再來研究第4個圖形。
(拓展)你還有什么發(fā)現(xiàn)?展示幻燈片11。
除了這種方法,你還有其它研究方法?(學生思考后,可以出示幻燈片12)
(二)拓展延伸
出示梯形和螺旋形點陣:除了正方形、三角形和長方形點陣之外,還有這樣的點陣,什么形狀的?
我們來看書本98頁的練一練第1題,學生先做后,出示幻燈片13來檢查。
對,同學們,在生活中你見過或感受過點陣嗎?你見過哪些點陣?(指生說)其實生活中的點陣還有很多,同學們請看(出示幻燈片14)點陣以其獨特的魅力被人們廣泛的應用于生活,這些點陣中也隱藏著有趣的規(guī)律。只是課上的這40分鐘太有限了,不過,有興趣的同學課下可以繼續(xù)研究。
四、回顧整理,反思提升
1.同學們,時間過的真快,馬上要下課了,想一想,在這節(jié)課中,你有什么收獲?(生談收獲)
2.你們總結的真好!同學們,在生活中,規(guī)律是普遍存在的,所以,老師希望每位同學都能從現(xiàn)在開始做個有心人,在以后的生活和學習中,多觀察、多思考,繼續(xù)去發(fā)現(xiàn)更多、更奇妙的規(guī)律。
板書設計:
點陣中的規(guī)律
1、正方形點陣
2、長方形點陣
3、三角形點陣
4、其它點陣
小結:在觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系,
感受數(shù)學文化的魅力,同一問題有不同的思路和解決方法。
小學數(shù)學五年級上冊《點陣中的規(guī)律》教案 篇6
目標預設:
1、學生在生動有趣的活動中觀察、尋找圖形的特點,通過探索正方形點陣和長方形點陣的的規(guī)律,發(fā)現(xiàn)正方形數(shù)、長方形數(shù)的特點, 體會到圖形與數(shù)的聯(lián)系,感受數(shù)學的趣味;
2、學生在探索感悟中體會到以形助數(shù)的直觀生動性,嘗試利用圖形解決一些簡單的問題;
3、引導學生從不同的角度看事物,增強學生解決問題的信心。
教學重點:
通過探究點陣中的規(guī)律發(fā)現(xiàn)數(shù)的特征。
教學難點:
體會圖形與數(shù)的聯(lián)系,并靈活主動的解決問題。
學情分析:
《點陣中的規(guī)律》一課是數(shù)形結合思想在教材中的具體體現(xiàn),通過一年級的找規(guī)律填數(shù),二年級的按規(guī)律接著畫,四年級探索圖形的規(guī)律,學生已有一些初步感受和經歷,但學生數(shù)形結合的主動性和操作能力還較弱。本節(jié)課主要通過對正方形、長方形點陣的研究,生動具體認識相同數(shù)(平方數(shù))之積、連續(xù)數(shù)之積的特點,并試著解決一簡單問題。五年級學生對數(shù)與圖形已有較好的學習基礎,數(shù)學教材中對因數(shù)、質數(shù)、合數(shù)等抽象概念的教學都是通過數(shù)形結合的思想方法來引導學生學習的,學生在解決問題時也通過畫線段圖、韋恩圖、示意圖以及表格等把數(shù)量關系轉化為形象的數(shù)量關系,所以五年級的學生是具備用數(shù)形結合的方法分析問題的基礎的。
預設流程:
一、談話導入,感受點陣
1、學生思考在每一冊的數(shù)學里,除了數(shù)還有什么內容,體現(xiàn)圖形的重要性。
2、學生說出認識的圖形。
3、引出并感受生活、數(shù)學里的點陣。
4、揭示課題。
二、 探究正方形點陣,發(fā)現(xiàn)平方數(shù)的特點
1、出示點陣,提出問題
⑴每個點陣可以看成什么圖形?
⑵每個點陣分別有多少個點?
2、探索點陣中的規(guī)律
師:誰愿意來談談第一個問題?
(可能會有學生認為第一個點陣不是正方形,引導學生認識到:邊長是由幾個點組成的,每個點可代表一個單位長度,點均勻分布,所以第一個點陣可看成是邊長是一的點陣)
師:第二個問題呢?
生能很快說出點數(shù)。
師:你是怎么得到每個點陣中點的個數(shù)的?
(可能會有數(shù)與算兩種方法,要求算的學生說出算式)
引導學生認識到算正方形的面積就得到了點數(shù)。
師:那我們看看這些從點陣中得到的數(shù),你覺得它們有什么特點嗎?
3、借點陣研究平方數(shù)的特點
生:這些數(shù)都可以寫成兩個相同的數(shù)相乘。
師:對,它們都是兩個相同數(shù)之積,在數(shù)學里叫也正方形數(shù)或平方數(shù)。
學生想第五個點陣的樣子,再把它畫出來。對畫出的'點陣進行劃分,根據學生生成發(fā)現(xiàn)正方形數(shù)的主要特點。
4、小結:平方數(shù)有什么特點?看到36這個數(shù),你會想到一個什么樣的點陣?根據這個圖形,你能把36寫成哪些有趣的算式?如果你以后忘記了平方數(shù)的特點,你會怎么辦?(有意識引導學生回顧方法)
三、自主探究長方形點陣,發(fā)現(xiàn)長方形數(shù)的特點
1、出示長方形點陣。
2、這是一個什么點陣?你能夠根據你發(fā)現(xiàn)的規(guī)律,把第五個點陣圖畫出來嗎?
3、誰能快速的告訴我,每一個點陣中有多少個點?
4、你是怎么算出來的?
5、這些數(shù)還是相同數(shù)相乘嗎?有什么特點?
6、你能象剛才研究正方形點陣一樣,通過研究長方形點陣的特點,發(fā)現(xiàn)連續(xù)數(shù)相乘的積的特點嗎?(自主研究,匯報交流)
7、小結
三、拓展提高,解決問題
1、感受點陣的數(shù)學、生活魅力。
2、 數(shù)形結合,解決問題。
板書設計:
點陣中的規(guī)律
正方形數(shù) 相同數(shù) 連續(xù)奇數(shù) 連續(xù)自然數(shù)—倒加
1 =1×1
4 =2×2 =1+3 =1+2+1
9 =3×3 =1+3+5 =1+2+3+2+1
16 =4×4 =1+3+5+7 =1+2+3+4+3+2+1
25 =5×5 =1+3+5+7+9 =1+2+3+4+5+4+3+2+1
長方形數(shù) ?
教后反思:
在對教材進行了深入的分析、挖掘和整合后,結合本次活動研究主題,把《點陣中的規(guī)律》分兩課時進行,本課時以“數(shù)形結合”為主線,著重讓學生通過研究正方形點陣、長方形點陣,發(fā)現(xiàn)相同數(shù)之積和連續(xù)數(shù)之積的特點;然后讓學生在練習中感受到圖形的直觀形象,數(shù)的簡潔細致;最后激發(fā)學生運用數(shù)形結合的思想解決一些有挑戰(zhàn)性的問題。學習形式和課堂呈現(xiàn)上,高段學生對學習“有用”的數(shù)學應該更加感興趣,所以,這節(jié)課主要用數(shù)學本身的內容來吸引學生,在研究幾何形數(shù)的過程中豐富學生對數(shù)學發(fā)展的認識,感受數(shù)學文化的魅力。教學主要分三個層次:在教師幫助下研究正方形點陣,發(fā)現(xiàn)正方數(shù)的特點;運用這種研究方法自主研究長方形點陣;運用數(shù)形結合思想解決實際問題,感受數(shù)學的魅力。
在課堂實踐中,給了學生極大的探索自由,學生的思維非常活躍,對正方形點陣進行了多種角度的分析,深刻體悟到正方形數(shù)的奧妙,也獲得了“借助點陣分析數(shù)”的方法。雖然課堂內未能按預設讓學生對長方形數(shù)自主探索(時間不夠,學生對正方形點陣很著迷,研究了很久),但相信他們已經有了自主發(fā)現(xiàn)的能力,課后,定能運用學到的研究方法去獨立地研究長方形數(shù)的特點。
小學數(shù)學五年級上冊《點陣中的規(guī)律》教案 篇7
教學內容
新世紀小學數(shù)學教材(北師大版)五年級上冊第五單元第四課時。
教學目標
1、結合具體的圖形,明確什么是“點陣”。
2、能在具體的觀察活動中,發(fā)現(xiàn)點陣中隱含的規(guī)律,體會到圖形與數(shù)的聯(lián)系。
3、發(fā)展歸納與概括的能力。
4、了解數(shù)學發(fā)展的歷史,感受數(shù)學文化的魅力。
教學重點
直觀感知“點陣”的有序排列。
教學難點
發(fā)現(xiàn)“點陣”中隱含的規(guī)律,體會圖形與數(shù)的聯(lián)系。
教材分析
教材結合2000多年前希臘數(shù)學家們利用圖形研究數(shù)的情境,先引導學生直觀感知有序排列的點陣,再要求學生嘗試用算式的方法研究給出的四個點陣,從而歸納出這四個點陣所隱含的規(guī)律。然后利用知識的遷移特點,依次往后類推第五個點陣的圖形畫法及劃分方法,讓學生體會通過點陣研究數(shù)的形式是多種多樣的。
教學思想
教材設計本活動的目的旨在通過學生對生活中常見現(xiàn)象的觀察與思考,發(fā)現(xiàn)在點陣中前后圖形中點的變化規(guī)律,類推出后續(xù)圖形中點的.數(shù)量和排列規(guī)律,學會推理、歸納和概括的學習方法,體會數(shù)學學習中舉一反三的教學思想。
教具準備
點陣圖片、多媒體課件等。
教學過程:
活動一:交流課前搜集的資料信息
1、對于數(shù)字的發(fā)明和發(fā)展過程,你都有哪些了解?
如:我們現(xiàn)在使用的數(shù)字是哪個國家的人發(fā)明的?
最初人們是怎樣計數(shù)的?
數(shù)字在使用過程中又增加了哪些功能?
你都了解數(shù)字的哪些特征?
……
2、阿拉伯數(shù)字的發(fā)明,是我們的記錄和計算更加方便,然而在表現(xiàn)一些數(shù)字的特征方面,圖形更加直觀。早在2000多年前,古希臘的數(shù)學家們就已經利用一些有序排列的點子圖形來研究數(shù),發(fā)現(xiàn)和總結數(shù)的一些特征,因此人們又叫它“點陣”。
活動二: 研究點陣中的規(guī)律
1、認識“點陣”。
(1)出示有序排列的三個點陣,引導學生觀察并思考:
下面三個點子圖中各有幾個點?在排列上有什么特點?
( 三個點陣按 1、4、9的順序排列)
(2)你能不能嘗試畫出第四個圖形、第五個圖形?
學生獨立思考并在小組內交流畫法。(16個點、25個點)
(3)像這樣有序排列的點子圖在數(shù)學上又叫它“點陣”。點陣可以分為方形點陣、三角形點陣、螺旋點陣等幾種形式。
2、探究規(guī)律。
(1)大家都能用數(shù)字來表示各個點陣中點的個數(shù),能不能嘗試用算式來表示點陣中點的個數(shù),從中發(fā)現(xiàn)一些隱藏的規(guī)律?(小組內交流)
(2)展示:第一個——1×1=1
第二個——2×2=4
第三個——3×3=9
第四個——4×4=9
第五個——5×5=25
小結:每個點陣的點子數(shù)可以看作是相同的數(shù)字相乘。
(3)其實通過圖形來研究數(shù)的形式是多種多樣的。請同學們仔細觀察點陣中點的劃分方法,你能發(fā)現(xiàn)什么規(guī)律?
(出示第五個點陣圖,多媒體課件分別按照1個點、3個點、5個點……的遞加規(guī)律演示)
(4)交流總結:
1 =1
1+3 =4
1+3+5 =9
1+3+5+7 =16
1+3+5+7+9 =25
小結:按照劃分方法這個點陣的點子數(shù)可以看作是連續(xù)奇數(shù)的和。
(5)你還有哪些劃分的方法?嘗試說明理由。
(學生自由討論交流)
活動三:延伸應用
教材第83頁“試一試”中的1、2兩題。
學生自主探索,討論交流。
課堂總結
1、這節(jié)課你有什么收獲?
2、除了以上方形點陣、三角形點陣以外,你還見過其他形式的點陣嗎?課后繼續(xù)調查、搜集并研究其規(guī)律。
【小學數(shù)學五年級上冊《點陣中的規(guī)律》教案】相關文章:
數(shù)學一年級上冊數(shù)學樂園教材教案(通用11篇)11-24
五年級上冊《除數(shù)是整數(shù)的小數(shù)除法》教案(精選9篇)08-22
五年級上冊綜合實踐太空夢教案(精選5篇)07-28
生活中的負數(shù)教案(精選9篇)07-11
小學二年級數(shù)學上冊知識點05-23
小學一年級上冊《加法》教案(精選6篇)09-20