同位角的教案
同位角的教案
以下是為您推薦的同位角、內錯角、同旁內角教案,希望本篇文章對您學習有所幫助。
同位角、內錯角、同旁內角
一、知識結構
二、重點難點
本節(jié)教學的重點是同位角、內錯角、同旁內角的概念.難點為在較復雜的圖形中辨認同位角、內錯角、同旁內角.掌握同位角、內錯角、同旁內角的相關概念是進一步學習平行線、四邊形等后續(xù)知識的基礎.
(1)兩條直線被第三條直線所截,構成八個角(簡稱“三線八角”),其中同位角4對,內錯角2對,同旁內角2對.
(2)準確識別同位角、內錯角、同旁內角的關鍵,是弄清哪兩條直線被哪一條線所截.也就是說,在辨別這些角之前,要弄清哪一條直線是截線,哪兩條直線是被截線.
(3)在截線的同旁找同位角和同旁內角,在截線的兩旁找內錯角.要結合圖形,熟記同位角、內錯角、同旁內角的位置特點,比較它們的區(qū)別與聯(lián)系.
(4)在復雜的圖形中識別同位角、內錯角、同旁內角時,應當沿著角的邊將圖形補全,或者把多余的線暫時略去,找到三線八角的基本圖形,進而確定這兩個角的位置關系.
三、教法建議
1.上節(jié)課討論了兩條直線相交以后所形成的四個角,這一節(jié)課是進一步討論三條直線相交后所形成的八個角,所以在教課過程,要運用基本圖形結構將所學的知識及其內在聯(lián)系向學生展示.
2.在講三線八角概念時,一定要細致地分析、顧名思義,把握住兩個關鍵的環(huán)節(jié),“三條線與一條線”,盡量給出變式的圖形,讓學生分辨清楚.
3.這節(jié)課雖然不涉及兩條直線平行后被第三條直線所截的問題,但在可能的情況下,將平行線的圖形讓學生見到,對下一步的學習很有好處,例如,平行四形中的內錯角,學生開始接受起來有一定困難,在這一課時中,出現(xiàn)這個基本圖形,為以后學習打下基礎.
教學設計示例
一、素質教育目標
(一)知識教學點
1.理解同位角、內錯角、同旁內角的概念.
2.結合圖形識別同位角、內錯角、同旁內角.
(二)能力訓練點
1.通過變式圖形的識圖訓練,培養(yǎng)學生的識圖能力.
2.通過例題口答“為什么”,培養(yǎng)學生的推理能力.
(三)德育滲透點
從復雜圖形分解為基本圖形的過程中,滲透化繁為簡,化難為易的化歸思想;從圖形變化過程中,培養(yǎng)學生辯證唯物主義觀點.
(四)美育滲透點
通過“三線八角”基本圖形,使學生認識幾何圖形的位置美.
二、學法引導
1.教師教法:嘗試指導,討論評價、變式練習、回授.
2.學生學法:主動思考,相互研討,自我歸納.
三、重點、難點、疑點及解決辦法
(一)生點
同位角、內錯角、同旁內角的概念.
(二)難點
在較復雜的圖形中辨認同位角、內錯角、同旁內角.
(三)疑點
正確理解新概念.
(四)解決辦法
引導學生討論歸納三類角的特征,并以練習加以鞏固.
四、課時安排
1課時
一、教具學具準備
投影儀、三角板、自制膠片.
五、師生互動活動設計
1.通過一組練習創(chuàng)設情境,復習基礎知識,引入新課.
2.通過學生閱讀書本,教師設問引導,練習鞏固講授新課.
3.通過師生互答完成課堂小結.
六、教學步驟
(一)明確目標
使學生掌握“三線八角”,并能在圖形中進行辨識.
(二)整體感知
以復習舊知創(chuàng)設情境引入課題,以指導閱讀、設計問題、小組討論學習新知,以變式練習鞏固新知.
(三)教學過程
創(chuàng)設情境,復習導入
回答下列問題:
1.如圖,∠1與∠3,∠2與∠4是什么角?它們的大小有什么關系?
2.如圖,∠1與∠2,∠l與∠4是什么角?它們有什么關系?
3.如圖,三條直線AB、CD、EF交于一點O,則圖中有幾對對頂角,有幾對鄰補角?
【同位角的教案】相關文章:
《左傳》教案10-24
存貨教案02-28
愛蓮說的經(jīng)典教案03-20
茶花賦教案04-06
《什么蟲》教案01-08
《文化苦旅》教案02-27
大學教案的寫法10-05
《認識鐘表》的教案03-19
《沙田山居》教案01-29