數(shù)學(xué)《立方根》教案
數(shù)學(xué)《立方根》教案
以下是為您推薦的立方根,希望本篇文章對(duì)您學(xué)習(xí)有所幫助。
立方根
●教學(xué)目標(biāo)
(一)教學(xué)知識(shí)點(diǎn)
1.了解立方根的概念,會(huì)用根號(hào)表示一個(gè)數(shù)的立方根.
2.能用立方運(yùn)算求某些數(shù)的立方根,了解開(kāi)立方與立方互為逆運(yùn)算.
3.了解立方根的性質(zhì).
4.區(qū)分立方根與平方根的不同.
(二)能力訓(xùn)練要求
1.在學(xué)了平方根的基礎(chǔ)上,要求學(xué)生能用類(lèi)比的方法學(xué)習(xí)立方根的有關(guān)知識(shí),領(lǐng)會(huì)類(lèi)比思想.
2.發(fā)展學(xué)生的求同求異思維,使他們能在復(fù)雜環(huán)境中明辨是非.
(三)情感與價(jià)值觀要求
當(dāng)今社會(huì)是科學(xué)飛速發(fā)展、信息千變?nèi)f化的時(shí)代,每一個(gè)人都不可能把一生中要接觸的知識(shí)全部學(xué)會(huì),因此讓他們會(huì)學(xué)知識(shí)比學(xué)會(huì)知識(shí)更重要,這就要從小培養(yǎng)良好的學(xué)習(xí)習(xí)慣,能自己解決的問(wèn)題就自己解決,其中類(lèi)比的學(xué)習(xí)方法就是一種重要的學(xué)習(xí)方法,本節(jié)課重點(diǎn)訓(xùn)練學(xué)生的類(lèi)比思想的養(yǎng)成.
●教學(xué)重點(diǎn)
立方根的概念.
●教學(xué)難點(diǎn)
1.正確理解立方根的概念.
2.會(huì)求一個(gè)數(shù)的立方根.
3.區(qū)分立方根與平方根的不同之處.
●教學(xué)方法
類(lèi)比學(xué)習(xí)法.
●教具準(zhǔn)備
投影片兩張:
第一張:平方根與立方根的聯(lián)系與區(qū)別(記作§2.3A);
第二張:補(bǔ)充練習(xí)(記作§2.3B).
●教學(xué)過(guò)程
Ⅰ.新課導(dǎo)入
上節(jié)課我們學(xué)習(xí)了平方根的定義,若x2=a,則x叫a的平方根,即x=±.
若正方體的棱長(zhǎng)為a,體積為8,根據(jù)正方體體積的公式得a3=8,那a叫8的什么呢?本節(jié)課請(qǐng)大家根據(jù)上節(jié)課的內(nèi)容自己來(lái)類(lèi)推出結(jié)論,若x3=a,則x叫a的什么呢?
Ⅱ.新課講解
1.[師]請(qǐng)大家先回憶平方根的定義.
[生]若一個(gè)數(shù)x的平方等于a,即x2=a,則x叫a的平方根.
[師]在平方根定義的基礎(chǔ)上,若x3=a,則x叫a的什么呢?請(qǐng)大家自己猜想然后討論得出結(jié)果.
[生]因?yàn)閤2=a,x叫a的平方根,所以當(dāng)x的立方等于a時(shí),x叫a的立方根.
[師]當(dāng)x4=a時(shí),x叫a的什么根呢?
[生]當(dāng)x的4次方等于a時(shí),x叫a的4次方根.
[師]大家應(yīng)為這位同學(xué)的精彩回答而鼓掌.下面大家能不能再根據(jù)平方根的寫(xiě)法來(lái)類(lèi)推立方根的記法呢?
[生]能.若x的平方等于a,則x叫a的平方根,記作x=±,讀作x等于正、負(fù)二次根號(hào)a,簡(jiǎn)稱(chēng)為x等于正,負(fù)根號(hào)a.若x的立方等于a,則x叫a的立方根,記作x=±,讀作x等于正、負(fù)三次根號(hào)a,簡(jiǎn)稱(chēng)x等于正、負(fù)根號(hào)a.
[師]請(qǐng)大家對(duì)這位同學(xué)的回答展開(kāi)討論,小組總結(jié)后選代表發(fā)言.
[生甲]我認(rèn)為這位同學(xué)回答得不對(duì).如果x2=a,則x=±,x3=a時(shí),x=±也成立的話(huà),那如何區(qū)分平方根與立方根呢?
[生乙]因?yàn)槌朔脚c開(kāi)方是互為逆運(yùn)算,求立方根可通過(guò)逆運(yùn)算立方來(lái)求,如x3=8,因?yàn)?3=8,所以x=2,只有一個(gè)根而不是±2,所以立方根的個(gè)數(shù)不正確.
[師]大家的分析非常有道理,請(qǐng)認(rèn)真看書(shū)第13、14頁(yè)可知,若一個(gè)數(shù)x的立方等于a,即x3=a,那么這個(gè)數(shù)x就叫做a的立方根(cuberoot;也叫三次方根)如2是8的立方根,記為x=,讀作x等于三次根號(hào)a.
開(kāi)立方的定義
[師]大家先回憶開(kāi)平方的定義,再類(lèi)推開(kāi)立方的定義.
[生]求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開(kāi)平方,則求一個(gè)數(shù)a的立方根的運(yùn)算,叫做開(kāi)立方,其中a叫做被開(kāi)方數(shù).
(2)立方根的性質(zhì)
[師]2的立方等于多少?是否有其他的數(shù),它的立方也是8?
[生]2的立方等于8,(-2)3=-8,所以沒(méi)有其他的數(shù)的立方等于8.
[師]-3的立方等于多少?是否有其他的數(shù),它的立方也是-27?
[生]-3的立方等于-27,33=27,所以沒(méi)有其他的數(shù)的立方等于-27.
[師]0的立方等于多少?0有幾個(gè)立方根?
[生]0的立方等于0,0有1個(gè)立方根是0.
[師]從剛才的討論中,大家總結(jié)一下正數(shù)有幾個(gè)立方根?0有幾個(gè)立方根?負(fù)數(shù)有幾個(gè)立方根?
[生]正數(shù)有一個(gè)立方根,0有一個(gè)立方根是0,負(fù)數(shù)有一個(gè)立方根.
[師]對(duì).正數(shù)有一個(gè)正的立方根、負(fù)數(shù)有一個(gè)負(fù)的立方根,0的立方根有一個(gè),是0.
(3)平方根與立方根的區(qū)別與聯(lián)系.
[師]我們已經(jīng)學(xué)習(xí)了平方根與立方根的定義,并會(huì)求某些數(shù)的平方根和立方根,下面請(qǐng)大家說(shuō)說(shuō)它們的聯(lián)系與區(qū)別.
[生]從定義來(lái)看,若一個(gè)數(shù)x的平方等于a,即x2=a,則x叫a的平方根;若一個(gè)數(shù)x的立方等于a,即x3=a,則x叫a的立方根,都是一個(gè)數(shù)x的乘方等于a,但一個(gè)是平方,另一個(gè)是立方.
[生]一個(gè)正數(shù)的平方根有兩個(gè),一個(gè)負(fù)數(shù)沒(méi)有平方根,零的平方根有一個(gè)是零;一個(gè)正數(shù)的立方根有一個(gè),并且是正數(shù),一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根,零的立方根有一個(gè)是零.
[生]它們的表示方法和讀法不同,一個(gè)正數(shù)a的平方根表示為±,立方根表示為.
[師]很好.大家現(xiàn)在已經(jīng)具備了一定的分析判斷能力,這對(duì)大家以后的學(xué)習(xí)和工作非常有幫助,繼續(xù)發(fā)揚(yáng)下去,你們都將前途無(wú)量,下面我再系統(tǒng)地總結(jié)一下.
投影片:(§2.3A)
平方根與立方根的聯(lián)系與區(qū)別.
聯(lián)系:
(1)0的平方根、立方根都有一個(gè)是0.
(2)平方根、立方根都是開(kāi)方的結(jié)果.
區(qū)別:
(1)定義不同:“如果一個(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根”;“如果一個(gè)數(shù)的立方等于a,這個(gè)數(shù)就叫做a的立方根.”
(2)個(gè)數(shù)不同:一個(gè)正數(shù)有兩個(gè)平方根,一個(gè)正數(shù)有一個(gè)立方根;一個(gè)負(fù)數(shù)沒(méi)有平方根,一個(gè)負(fù)數(shù)有一個(gè)立方根.
(3)表示法不同
正數(shù)a的平方根表示為±,a的立方根表示為.
(4)被開(kāi)方數(shù)的取值范圍不同
±中的被開(kāi)方數(shù)a是非負(fù)數(shù);中的被開(kāi)方數(shù)可以是任何數(shù).
2.例題講解
[例1]求下列各數(shù)的立方根:
(1)-27;(2);(3)0.216;(4)-5.
解:(1)因?yàn)?-3)3=-27,所以-27的立方根是-3,即=-3;
(2)因?yàn)?)3=,所以的立方根是,即=;
(3)因?yàn)?.63=0.216,所以0.216的立方根是0.6,即=0.6;
(4)-5的立方根是.
[師]請(qǐng)大家思考下列問(wèn)題.
表示a的立方根,則()3等于什么?等于什么?
大家可以先舉例后找規(guī)律.
[生]∵23=8,∴=2,()3=8;
∵(-2)3=-8,
∴=-2;()3=-8;
∵()3=,
∴;
∵(-)3=-,
∴.
∴()3=a.
[師]若x3=a,則x=,∴x3=()3=a.
∴()3=a.
又∵a3是a的立方,所以a3的立方根就是a,所以=a.下面就這兩個(gè)式子進(jìn)行練習(xí).
[例2]求下列各式的值:
(1);(2);(3)-;(4)()3
解:(1)==-2;
(2)=;
(3)=;
(4)()3=9.
Ⅲ.課堂練習(xí)
(一)隨堂練習(xí)
1.求下列各式的值:
.
解:;
2.一個(gè)正方體,它的體積是棱長(zhǎng)為3厘米的正方體體積的8倍,這個(gè)正方體的棱長(zhǎng)是多少?
解:設(shè)正方體的棱長(zhǎng)是x厘米,得
x3=8×33
∴x3=216
∴x=6(厘米)
答:這個(gè)正方體的棱長(zhǎng)是6厘米.
(二)補(bǔ)充練習(xí)
投影片:(§2.3B)
1.求下列各數(shù)的立方根:
0,1,-,6,-,0.001
2.求下列各式的值:
3.下列說(shuō)法對(duì)不對(duì)?
-4沒(méi)有立方根;
1的立方根是±1;
的立方根是;
-5的立方根是-;
64的算術(shù)平方根是8.
1.解:因?yàn)?3=0,所以0的立方根為0.
即=0;
因?yàn)?3=1,所以1的立方根為1.
即=1;
因?yàn)榈牧⒎礁鶠?
即;
6的立方根為;
∵-的立方根為-,即;
∵0.13=0.001,所以0.001的立方根為0.1,即=0.1.
2.解:;
.
3.答案:錯(cuò).因?yàn)樨?fù)數(shù)也有立方根;
錯(cuò).因?yàn)?的立方根是1;
錯(cuò).的立方根是,平方根是±;
對(duì).-5的立方根是,-;
對(duì).
Ⅳ.議一議
1.某化工廠使用一種球形儲(chǔ)氣罐儲(chǔ)藏氣體.現(xiàn)在要造一個(gè)新的球形儲(chǔ)氣罐,如果它的體積是原來(lái)的8倍,那么它的半徑是原儲(chǔ)氣罐半徑的多少倍?
解:設(shè)原來(lái)的球形儲(chǔ)氣罐的半徑為r1,后來(lái)的儲(chǔ)氣罐的半徑為r2,由球體積公式V=πr3得
8×πr13=πr23
∴8r13=r23
∴(2r1)3=r23
∴r2=2r1
即新儲(chǔ)氣罐的半徑是舊儲(chǔ)氣罐半徑的2倍.
2.一個(gè)正方體的體積變?yōu)樵瓉?lái)的n倍,它的棱長(zhǎng)變?yōu)樵瓉?lái)的多少倍?
解:設(shè)原正方體的棱長(zhǎng)為a,后來(lái)的正方體的棱長(zhǎng)為b,得
na3=b3∴
∴b=.
即后來(lái)的棱長(zhǎng)變?yōu)樵瓉?lái)的倍.
Ⅴ.課時(shí)小結(jié)
本節(jié)課學(xué)了如下內(nèi)容:
1.立方根的定義.
2.立方根的性質(zhì).
3.開(kāi)立方的定義.
4.平方根與立方根的區(qū)別與聯(lián)系.
5.會(huì)求一個(gè)數(shù)的立方根.
Ⅵ.課后作業(yè)
習(xí)題2.5.
Ⅶ.活動(dòng)與探究
1.求下列各式中的x.
(1)8x3+27=0;
(2)(x-1)3-0.343=0;
(3)81(x+1)4=16;
(4)32x5-1=0.
分析:先把每一個(gè)式子都化成x3=的形式,然后再根據(jù)平方根或立方根的定義來(lái)求,
解:(1)由8x3+27=0.∴8x3=-27
∴x3=∴x=;
(2)由(x-1)3-0.343=0
∴(x-1)3=0.343
∴x-1==0.7
∴x=1.7;
(3)由81(x+1)4=16
∴(x+1)4=
∴x+1=±
∴x=±-1∴x=-或x=-;
(4)由32x5-1=0
∴x5=
∴x=.
2.求滿(mǎn)足+1=x的x的值.
解:=x-1
∴x-1=-1或x-1=0或x-1=1
∴x=0或x=1或x=2
3.計(jì)算
(1)-;
(2).
解:(1);
(2)
【數(shù)學(xué)《立方根》教案】相關(guān)文章:
數(shù)學(xué)教案:圓的認(rèn)識(shí)02-12
數(shù)學(xué)因真實(shí)而精彩教案03-20
認(rèn)識(shí)球體數(shù)學(xué)教案03-20
蘇教版數(shù)學(xué)分?jǐn)?shù)的教案03-20
高三數(shù)學(xué)的復(fù)習(xí)教案03-19
數(shù)學(xué)活動(dòng)教案之看看數(shù)數(shù)03-20
數(shù)學(xué)教案模版之?dāng)?shù)軸03-20
讓數(shù)學(xué)生活化的教案03-19