《有理數(shù)的除法》教案(精選9篇)
教案是教師為順利而有效地開展教學(xué)活動(dòng),根據(jù)課程標(biāo)準(zhǔn),教學(xué)大綱和教科書要求及學(xué)生的實(shí)際情況,以課時(shí)或課題為單位,對(duì)教學(xué)內(nèi)容、教學(xué)步驟、教學(xué)方法等進(jìn)行的具體設(shè)計(jì)和安排的一種實(shí)用性教學(xué)文書。下面是小編整理的《有理數(shù)的除法》教案,歡迎大家分享。
《有理數(shù)的除法》教案 篇1
學(xué)習(xí)目標(biāo)
1. 理解除法的意義,理解除法是乘法的逆運(yùn)算,理解倒數(shù)的意義,掌握有理數(shù)的除法法則.
2. 熟練地進(jìn)行有理數(shù)的除法運(yùn)算;
3. 借助有理數(shù)乘法知識(shí),通過歸納、類比等方法獲得有理數(shù)的除法法則.
重點(diǎn) 有理數(shù)的除法法則
難點(diǎn) 理解商的符號(hào)及其絕對(duì)值與被除數(shù)和除數(shù)的關(guān)系
教學(xué)過程
一、自主學(xué)習(xí)
(一)、自學(xué)課文
(二)、導(dǎo)學(xué)練習(xí)
1. 小明從家里到學(xué)校,每分鐘走50米,共走了20分鐘,問小明家離學(xué)校有多遠(yuǎn)?
放學(xué)時(shí),小明仍然以每分鐘50米的速度回家,應(yīng)該走多少分鐘?
從上面這個(gè)例子你可以發(fā)現(xiàn),有理數(shù)除法與有理數(shù)乘法之間滿足怎樣的關(guān)系?
2.請(qǐng)找出下列有理數(shù)的倒數(shù)
-4 3 -8 - -1 -3.5
3.比較大小:8(-4)_______8 (-15)3_______(-15)
(-1 )(-2) (-1 )(- )
計(jì)算:(1)(-15)(-3)= (2)(-12)(- )=
(3)(-8)(- )= (4)0(- )=
通過比較、計(jì)算,你能歸納出有理數(shù)的除法法則嗎?
有理數(shù)的除法法則:
(或換一種表達(dá)方法為):
用字母表示除法法則:
4.課本第35頁(yè)練習(xí)題
(三)自學(xué)疑難摘要:
組長(zhǎng)檢查等級(jí): 組長(zhǎng)簽名:
二、合作探究
例1 計(jì)算:
(1)(-18)6 (2) (- )
(3) (4)-3.5 (- )
注意:乘除混合運(yùn)算該怎么做呢?
例2化簡(jiǎn)下列分?jǐn)?shù):
(1) (2)
請(qǐng)思考:商的符號(hào)及絕對(duì)值同被除數(shù)和除數(shù)有什么關(guān)系?
三、展示提升
1、每個(gè)同學(xué)自主完成二中的練習(xí)后先在小組內(nèi)交流討論。
2、每個(gè)組根據(jù)分配的任務(wù)把自己組的結(jié)論板書到黑板上準(zhǔn)備展示。
3、每個(gè)組在展示的過程中其他組的同學(xué)認(rèn)真聽作好補(bǔ)充和提問。
四、反饋與檢測(cè)
1.計(jì)算84(-7)等于( ).
A.-12 B.12 C.-14 D.14
2.- 的倒數(shù)是( ).
A.- B. C. D.-2
3.下列說(shuō)法錯(cuò)誤的是( ).
A.任何有理數(shù)都有倒數(shù) B.互為倒數(shù)的兩數(shù)的積等于1
C.互為倒數(shù)的兩數(shù)符號(hào)相同 D.1和其本身互為倒數(shù)
4.計(jì)算: (1)(-40)(-12) (2)(-60)(+3 )
(3)(-30 )(-15) (4)(-0.33)(+ )(-9)
(5)(-2 )(-5)(-3 ) (6)(-81)2 (-16)
5.(1)兩數(shù)的積是1,已知一數(shù)是-2 ,求另一數(shù).
(2)兩數(shù)的商是-3 ,已知被除數(shù)4 ,求除數(shù).
6.解下列方程:
(1)-3.4x=-6.8 (2)- x=-
7.課本第36頁(yè)練習(xí)題
組長(zhǎng)檢查等級(jí): 組長(zhǎng)簽名:
小結(jié):通過這節(jié)課的學(xué)習(xí),你學(xué)到了哪些知識(shí)?還有哪些地方不懂?請(qǐng)說(shuō)出來(lái)
《有理數(shù)的除法》教案 篇2
一、知識(shí)與技能
掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算以及分?jǐn)?shù)的化簡(jiǎn)。
二、過程與方法
通過學(xué)習(xí)有理數(shù)除法法則,體會(huì)轉(zhuǎn)化思想,會(huì)將乘除混合運(yùn)算統(tǒng)一為乘法運(yùn)算。
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生勇于探索積極思考的良好學(xué)習(xí)習(xí)慣。
四、教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):正確應(yīng)用法則進(jìn)行有理數(shù)的除法運(yùn)算。
2.難點(diǎn):靈活運(yùn)用有理數(shù)除法的兩種法則。
3.關(guān)鍵:會(huì)將有理數(shù)的除法轉(zhuǎn)化為乘法。
五、教學(xué)過程,課堂引入
1.小學(xué)里,除法的意義是什么?它與乘法有什么關(guān)系?
已知兩數(shù)的積與一個(gè)因數(shù),求另一個(gè)因數(shù)。用除法,乘法與除法互為逆運(yùn)算除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)。
2.求下列各數(shù)的倒數(shù):
(1)-; (2)-0.125; (3)-1.
六、新授
引入負(fù)數(shù)后,如何計(jì)算有理數(shù)的除法呢?
例如8(-4)。
根據(jù)除法意義,這就是要求一個(gè)數(shù),使它與-4相乘得8.
因?yàn)?(-2)(-4)=8
所以 8(-4)=-2 ①
另外,我們知道,8(-)=-2 ②
由①、②得 8(-4)=8(-) ③
③式表明,一個(gè)數(shù)除以-4可以轉(zhuǎn)化為乘以-來(lái)進(jìn)行,即一個(gè)數(shù)除以-4,等于乘以-4的倒數(shù)-.
探索:換其他數(shù)的除法進(jìn)行類似討論,是否仍有除以a(a0)可以轉(zhuǎn)化為乘以呢?[例如(-10)(-4)]
從而得出有理數(shù)除法法則:
除以一個(gè)不等于0的數(shù),等于乘以這個(gè)數(shù)的倒數(shù)。
這個(gè)法則也可以表示成:
《有理數(shù)的除法》教案 篇3
1教學(xué)目標(biāo)
1.使學(xué)生理解有理數(shù)除法的意義,掌握有理數(shù)除法法則,會(huì)進(jìn)行有理數(shù)除法運(yùn)算;
2.運(yùn)用轉(zhuǎn)化思想,理解有理數(shù)除法的意義,培養(yǎng)學(xué)生新舊知識(shí)之間聯(lián)系的思維能力,通過乘除法之間的逆運(yùn)算,培養(yǎng)學(xué)生逆向思維的能力,提高學(xué)生的計(jì)算能力,培養(yǎng)轉(zhuǎn)化和全面分析問題的能力.
2學(xué)情分析
本節(jié)課是學(xué)生在學(xué)習(xí)了有理數(shù)的基礎(chǔ)上學(xué)習(xí)的,學(xué)生學(xué)起來(lái)比較容易
3重點(diǎn)難點(diǎn)
1.教學(xué)重點(diǎn):正確運(yùn)用有理數(shù)除法法則進(jìn)行有理數(shù)除法運(yùn)算;
2.教學(xué)難點(diǎn):理解零不能做除數(shù),零沒有倒數(shù),尋找有理數(shù)除法轉(zhuǎn)化為有理數(shù)乘法的方法和條件;
4教學(xué)過程
4.1有理數(shù)的除法
教學(xué)活動(dòng)
活動(dòng)1
有理數(shù)的除法
一、課前復(fù)習(xí)提問
1.有理數(shù)乘法法則;
2.有理數(shù)乘法的運(yùn)算律:乘法交換律,乘法結(jié)合律,乘法分配律;
3.倒數(shù)的意義.
二、講授新課
(一)有理數(shù)除法法則的推導(dǎo)
[問題]怎樣計(jì)算8÷(-4)呢?
[提問]小學(xué)學(xué)過的除法的意義是什么?
得出 ①8÷(-4)=-2;又②8×( )=-2;于是有
③8÷(-4)=8×( ).
由此得出有理數(shù)除法法則:
除以一個(gè)不等于0的數(shù),等于乘以這個(gè)數(shù)的倒數(shù).
可以表示為:
a÷b=a· (b≠0) .
類似于乘法法則可得:
兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.零除以任何一個(gè)不等于0的數(shù),都得0.
對(duì)有理數(shù)除法法則的理解:
(1)法則所揭示的內(nèi)容告訴我們,有理數(shù)除法與小學(xué)時(shí)學(xué)的除法一樣,它是乘法的逆運(yùn)算,是借助“倒數(shù)”為媒介,將除法運(yùn)算轉(zhuǎn)化為乘法運(yùn)算進(jìn)行(強(qiáng)調(diào),因?yàn)?沒有倒數(shù),所以除數(shù)不能為0);
(2)法則揭示有理數(shù)除法的運(yùn)算步驟:第一步,確定商的符號(hào),第二步,求出商的絕對(duì)值.
(二)有理數(shù)除法法則的運(yùn)用
例1 計(jì)算:(1)(-36)÷9;
(2)( )÷( ).
強(qiáng)調(diào):兩數(shù)相除,先確定商的符號(hào),再確定商的絕對(duì)值.
例2 化簡(jiǎn)下列分?jǐn)?shù):
(1) ; (2) .
強(qiáng)調(diào):(1)符號(hào)法則;(2)一般來(lái)說(shuō),在能整除的情況下,往往采用法則的后一種形式,在確定符號(hào)后,直接除.在不能整除的情況下,則往往將除數(shù)換成倒數(shù),轉(zhuǎn)化為乘法.
例3 計(jì)算:
(1)(-125 )÷(-5);
(2)-2.5÷ ;
(三)課堂練習(xí)
1.教材P35練習(xí)
2.補(bǔ)充練習(xí)
(1)-1÷( )= ,0÷14 = , ÷(-3)=9.
(2)倒數(shù)等于本身的數(shù)是 .
(3)若a、b互為倒數(shù),則-13ab= .
(4)被除數(shù)是-3 ,除數(shù)比被除數(shù)大1 ,則商是 .
(5)若ab=1,且a=-1 ,則b .
(6)計(jì)算:
1.(-32)+(-2);-(-2 )÷(- );
2.125÷(-2 ); (-0.009)÷0.03; .
(7)若有理數(shù)a≠0,b≠0,則 的值為 .
(8)若a、b、c為有理數(shù),且 =-1,求 的值.
(四)小結(jié)
1.通過小學(xué)除法意義的理解和類比,得出有理數(shù)除法法則,法則一:除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù),零不能做除數(shù).法則二:兩數(shù)相除,同號(hào)得正,異好號(hào)得負(fù),并把絕對(duì)值相除;零除以任何一個(gè)不等于零的數(shù)都得零.
2.有理數(shù)的除法有兩種方法,一般能整除時(shí)用第二種方法.強(qiáng)調(diào)要先確定結(jié)果的符號(hào).
(五)作業(yè)
教材P38中4
(六)教學(xué)反思
本節(jié)課是學(xué)生在學(xué)習(xí)了有理數(shù)乘法的基礎(chǔ)上學(xué)習(xí)的,在小學(xué)的時(shí)候已經(jīng)學(xué)習(xí)了兩數(shù)的除法法則,所以這節(jié)課的內(nèi)容對(duì)大部分學(xué)生來(lái)說(shuō),不是很難,他們只要會(huì)確定兩數(shù)相除商的符號(hào),然后在求商的絕對(duì)值就可以了。
《有理數(shù)的除法》教案 篇4
設(shè)計(jì)理念
1.注意突出學(xué)生的自主探索,通過一些熟悉的、具體的事物,讓學(xué)生在觀察、思考、探索中體會(huì)有理數(shù)的意義,探索數(shù)量關(guān)系,掌握有理數(shù)的運(yùn)算。教學(xué)中要注重讓學(xué)生通過自己的'活動(dòng)來(lái)獲取、理解和掌握這些知識(shí)。
2.本課注意降低了對(duì)運(yùn)算的要求,尤其是刪去了繁難的運(yùn)算。注重使學(xué)生理解運(yùn)算的意義,掌握必要的基本的運(yùn)算技能。
教學(xué)目標(biāo)知識(shí)與技能:
1.使學(xué)生理解有理數(shù)倒數(shù)的意義。
2.使學(xué)生掌握有理數(shù)的除法法則,能夠熟練地進(jìn)行除法運(yùn)算。
過程與方法:
培養(yǎng)學(xué)生觀察、歸納、概括及運(yùn)算能力。
情感態(tài)度、價(jià)值觀:
讓學(xué)生感知數(shù)學(xué)來(lái)源于生活,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
重點(diǎn)
有理數(shù)除法法則。
難點(diǎn)
(1)、商的符號(hào)的確定;
(2)、0不能作除數(shù)的理解。
教學(xué)過程
一、復(fù)習(xí)引入
1.敘述有理數(shù)乘法法則
2.敘述有理數(shù)乘法的運(yùn)算律。
3.計(jì)算:
①(―6)
②
③(―3)(+7)―9(―6)
④
二、自主學(xué)習(xí)計(jì)算:
8
嘗試
8(- )
1.師生共同研究有理數(shù)除法法則:
①問題:
一個(gè)數(shù)與2的乘積是-6,這個(gè)數(shù)是幾?你能否回答?這個(gè)問題寫成算式有兩種:
2( ?)=-6, (乘法算式)
也就是 (-6)2=( ?) (除法算式)
由2(-3)=-6,
我們有(-6)2=-3。另外,我們還知道: (-6) =-3。
所以,(-6)2=(-6) 。這表明除法可以轉(zhuǎn)化為乘法來(lái)進(jìn)行。
《有理數(shù)的除法》教案 篇5
教學(xué)目標(biāo):
知識(shí)與技能:理解倒數(shù)的意義,會(huì)求有理數(shù)的倒數(shù)。了解有理數(shù)除法的意義,理解有理數(shù)除法的法則,會(huì)進(jìn)行有理數(shù)的除法運(yùn)算.
過程與方法:通過有理數(shù)除 法的法則的導(dǎo)出及運(yùn)用,學(xué)生能體會(huì)轉(zhuǎn)化的思想。
感知數(shù)學(xué)知識(shí)具有普遍聯(lián)系性、相互轉(zhuǎn)化性。
情感與態(tài)度:通過有理數(shù)乘法運(yùn)算的推廣,體會(huì)知識(shí)系統(tǒng)的完整性。
體會(huì)在解決問題的過程中與他人合作的重要性。通過對(duì)解決問題的過程的反思,獲得解決問題的經(jīng)驗(yàn)。
教學(xué)重點(diǎn):
有理數(shù)的除法法則及其運(yùn)用
教學(xué)難點(diǎn):
(1)商的符號(hào)的確定。
(2)0不能作除數(shù)的理解。
教材分析:
乘法與除法互為逆運(yùn)算,小學(xué)已經(jīng)學(xué)過。通過實(shí)例引入,說(shuō)明它在有理數(shù)的范圍內(nèi)也成立。本節(jié)內(nèi)容在學(xué)生已有有理數(shù)乘法知識(shí)的基礎(chǔ)上 ,通過學(xué)生經(jīng)歷從具體情景中抽象出法則的過程,使他們發(fā)現(xiàn)其中的規(guī)律,掌握必要的運(yùn)算技能,使學(xué)生在有理數(shù)運(yùn)算的學(xué)習(xí)中繼續(xù)發(fā)展數(shù)感,在符號(hào)法則的學(xué)習(xí)中增強(qiáng)符號(hào)感。
教具:
多媒體課件
教學(xué)方法 :
引導(dǎo)發(fā)現(xiàn)法 類比歸納法
課時(shí)安排:
一課時(shí)
創(chuàng)設(shè)情境
問題:有四名同學(xué)參加數(shù)學(xué)測(cè)驗(yàn),以90分為標(biāo)準(zhǔn),超過得分?jǐn)?shù)記為正數(shù),不足的分?jǐn)?shù)記為負(fù)數(shù),評(píng)分記錄 如下:+5、-20。-19。-14。求:這四名同學(xué)的平均成績(jī)是超過80 分或不足80分? 學(xué)生在教師的激情 互動(dòng)中,思考列式(+5-20-19-14)÷4
化簡(jiǎn):(-48)÷4=?(但不知如何計(jì)算)
揭示課題
從實(shí)際生活引入,體現(xiàn)數(shù)學(xué)知識(shí)源于生活及數(shù)學(xué)的現(xiàn)實(shí)意義。
復(fù)習(xí)回顧 前置補(bǔ)償
求下列各數(shù)的倒數(shù):
(1)- ;(2)4 ;(3)0.2(4)-0.25;(5)-1
學(xué)生對(duì)老師的提問進(jìn)行搶答 為學(xué)習(xí)今天的有理數(shù)除法先復(fù)習(xí)小學(xué)倒數(shù)概念
探究活動(dòng)一 課件出示練習(xí)題
填空:
① 8÷(-2)=8×( );
② 6÷(-3)=6×( );
③ -6÷( )=-6× ;
④ -6÷( )=-6× 。
教師強(qiáng)調(diào)0沒有倒數(shù)。 學(xué)生填空后試著得出互為倒數(shù)的概念(乘積是1的兩個(gè)數(shù)互為倒數(shù))
培養(yǎng)學(xué)生發(fā)現(xiàn)問題總結(jié)問題的能力
探究活動(dòng)二 引例1 計(jì)算:(-6)÷2
根據(jù)除法是乘法的逆運(yùn)算,引導(dǎo)學(xué)生 將有理數(shù)的除法運(yùn)算轉(zhuǎn)化為學(xué)生已知的乘法運(yùn)算。
強(qiáng)調(diào)0不能作除數(shù)。(舉例強(qiáng)化已導(dǎo)出的法則) 學(xué)生自主探究有理數(shù)的除法運(yùn)算轉(zhuǎn)化為學(xué)生一致的乘法運(yùn)算
學(xué)生歸納導(dǎo)出法則(一):除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)
小組合作交流探究發(fā)現(xiàn)結(jié)果
探究活動(dòng)三
(舉例強(qiáng)化已導(dǎo)出的法則)
例1計(jì)算(1)(-105)÷7[
(2)6÷(-0.25)
(3)(-0.09)÷(-0.3)
教師強(qiáng)調(diào)(1)除法法則與乘法法則相近,只是“乘”“除”二字不同,很容易記。.(2)此法則是有理數(shù)的除法運(yùn)算的又一種 方法。
學(xué)生自己觀察回憶,進(jìn)行自主學(xué)習(xí)和合作交流, 得出有理數(shù)的除法法則(兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。0除以任何不等于0的數(shù)都得0)
激發(fā)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性滿足學(xué)生的表現(xiàn)欲和探究欲)
強(qiáng)化練習(xí) 課本 例2計(jì)算 :
(1)(- )÷(-6)÷(- )
(2)( - )÷(- )
學(xué)生試著獨(dú)立完成 有理數(shù)的除法法則的靈活應(yīng)用,并滲透了除法、分?jǐn)?shù)、比可互相轉(zhuǎn)化。
反饋矯正
課本69—70頁(yè)第1、2、3題 學(xué)生獨(dú)立完成并小組互評(píng) 鞏固法則,調(diào)動(dòng)學(xué)生積極性
歸納小節(jié) 1、 學(xué)習(xí)內(nèi)容:倒數(shù)的概念及求法;有理數(shù)的除法
2、 通過本節(jié)的學(xué)習(xí),你有哪些體會(huì)?請(qǐng)與同學(xué)交流。
同學(xué)之間進(jìn)行交 流,小結(jié)本節(jié)內(nèi)容 培養(yǎng)了學(xué)生總結(jié)問題的能力
作業(yè)布置 必做題:課本70頁(yè)第1,3,4題
選做題:若ab≠0,則 可能的取值是_______. 綜合考查,學(xué)以致用。 不同的學(xué)生得到不同的發(fā)展
附:板書設(shè)計(jì)
2.9 有理數(shù)的除法
例1計(jì)算: 練習(xí)處:
例2 計(jì)算:
教學(xué)反思:
《有理數(shù)的除法》一課是傳統(tǒng)內(nèi)容,在設(shè)計(jì)理念上,我努力體現(xiàn)“以學(xué)生為主”的思想,從學(xué)生已有的知識(shí)經(jīng)驗(yàn)出發(fā),展開教學(xué),使學(xué)生自然進(jìn)入狀態(tài),一切都很順暢,達(dá)到了課前設(shè)計(jì)的構(gòu)想。在教學(xué)中,突出了學(xué)生在教學(xué)學(xué)習(xí)過程的主體地位,突出了 探索式學(xué)習(xí)方式,讓學(xué)生經(jīng)歷了觀察、實(shí)踐、猜測(cè)、推理、交流、反思等活力,既應(yīng)用了基本概念、基礎(chǔ)知識(shí)又鍛煉了學(xué)生能力 。
在這節(jié)課中,本人認(rèn)為也有不足之處,由于學(xué)生的層次各異,在總結(jié)問題時(shí),中等以下和學(xué)習(xí)有困難的學(xué)生明顯信心不足,要注意和他們交流、幫助他們把復(fù)雜的問題化為簡(jiǎn)單的問題。
《有理數(shù)的除法》教案 篇6
一、教學(xué)目標(biāo)
知識(shí)與技能:
①使學(xué)生在了解乘法的基礎(chǔ)上,掌握有理數(shù)乘法法則并初步掌握有理數(shù)乘法法則的合理性。
②會(huì)進(jìn)行有理數(shù)乘法運(yùn)算。
③了解有理數(shù)的倒數(shù)定義,會(huì)求一個(gè)數(shù)的倒數(shù)。
過程與方法:
①經(jīng)歷探索有理數(shù)乘法法則,發(fā)展,觀察,歸納,猜想,驗(yàn)證的能力以及培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力。
②提高學(xué)生的運(yùn)算能力
情感與態(tài)度:通過合作學(xué)習(xí)調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)生認(rèn)識(shí)世界的水平。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):依據(jù)有理數(shù)的乘法法則,熟練進(jìn)行有理數(shù)的乘法運(yùn)算;
難點(diǎn):有理數(shù)乘法中的符號(hào)法則.
三、教學(xué)過程
(一)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,復(fù)習(xí)舊知,導(dǎo)入新課
前面我們學(xué)習(xí)了有理數(shù)的加減法,接下來(lái)就應(yīng)該學(xué)習(xí)有理數(shù)的乘除法.同學(xué)們先看下面的問題:甲水庫(kù)的水位每天升高3㎝,乙水庫(kù)的水位每天下降3㎝。4天后,甲、乙水庫(kù)各自水位的總變化量是多少?
如果用正號(hào)表示水位的上升、用負(fù)號(hào)表示水位的下降。那么,4天后,甲水庫(kù)水位的總變化量是:3+3+3=3×4=12㎝
乙水庫(kù)水位的總變化量是:(-3)+(-3)+(-3)+(-3)=(-3)×4=-12㎝引出課題:有理數(shù)的乘法
(二)學(xué)生探索新知,歸納法則
學(xué)生分為四個(gè)小組活動(dòng),進(jìn)行乘法法則的探索
設(shè)蝸牛現(xiàn)在的位置為點(diǎn)O,若它一直都是沿直線爬行,而且每分鐘爬行2cm,問:
(1)向右爬行,3分鐘后的位置?
(2)向左爬行,3分鐘后的位置?
(3)向右爬行,3分鐘前的位置?
(4)向左爬行,3分鐘前的位置?
(學(xué)生思考后回答)要確定蝸牛的位置需要知道:距離和方向。
為了區(qū)分方向:我們規(guī)定向右為正,向左為負(fù);為區(qū)分時(shí)間:我們規(guī)定現(xiàn)在的時(shí)間前為負(fù),現(xiàn)在的時(shí)間后為正。
(1)情形一:蝸牛在現(xiàn)在位置的右邊6㎝處。式子表示為:
(+2)×(+3)=+6
數(shù)軸表示如右:
(2)情形二:蝸牛在現(xiàn)在位置的左邊6㎝處。式子表示為:(-2)×3=-6
數(shù)軸表示如右:
(3)情形三:蝸牛在現(xiàn)在位置的左邊6㎝處。式子表示為:(+2)×(-3)=-6
數(shù)軸表示如右
(4)情形四:蝸牛在現(xiàn)在位置的右邊6㎝處。式子表示為:(-2)×(-3)=+6
數(shù)軸表示如右:
仔細(xì)觀察上面得到的四個(gè)式子:
(1)(+2)×(+3)=+6
(2)(-2)×3=-6
(3)(+2)×(-3)=-6
(4)(-2)×(-3)=+6
根據(jù)你對(duì)乘法的思考,你得到什么規(guī)律?
(三)學(xué)生歸納法則
a.符號(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?
(+)×(+)=()同號(hào)得
(-)×(+)=()異號(hào)得
(+)×(-)=()異號(hào)得
(-)×(-)=()同號(hào)得
b.任何數(shù)與零相乘,積仍為。
(四)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
歸納:有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。
任何數(shù)與0相乘,積仍為0。
(五)運(yùn)用法則計(jì)算,鞏固法則。
例1計(jì)算:(1)(-5)×(-3);(2)(-7)×4;(3)(-3)×9;(4)(-3)×(-)
引導(dǎo)學(xué)生觀察、分析例1中(4)小題兩因數(shù)的關(guān)系,得出:有理數(shù)中仍然有:乘積是1的兩個(gè)數(shù)互為倒數(shù).
例2.見課本P30頁(yè)
(六)分層練習(xí),鞏固提高。
(1)計(jì)算(口答):
①②③④
⑤⑥⑦⑧
四.課題小結(jié)
(1)有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘,任何數(shù)同0相乘,都得0。
(2)如何進(jìn)行兩個(gè)有理數(shù)的乘法運(yùn)算:先確定積的符號(hào),再把絕對(duì)值相乘,當(dāng)有一個(gè)因數(shù)為零時(shí),積為零。
五.作業(yè)布置
課本P30頁(yè)練習(xí)1,2,3.
《有理數(shù)的除法》教案 篇7
一、知識(shí)與技能
(1)會(huì)用計(jì)算器計(jì)算有理數(shù)的除法運(yùn)算。
(2)掌握有理數(shù)的加減乘除混合運(yùn)算。
二、過程與方法
通過本節(jié)課的數(shù)學(xué)活動(dòng),培養(yǎng)學(xué)生分析問題,綜合應(yīng)用知識(shí)解決實(shí)際問題的能力。
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生動(dòng)手操作能力,體會(huì)數(shù)學(xué)知識(shí)的應(yīng)用價(jià)值。
教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):掌握有理數(shù)的加減乘除混合運(yùn)算。
2.難點(diǎn):符號(hào)的確定。
3.關(guān)鍵:掌握運(yùn)算順序以及運(yùn)算法則。
四、教學(xué)過程、課堂引入
1、在小學(xué)里,加減乘除四則運(yùn)算的順序是怎樣的?
先乘除后加減,同級(jí)運(yùn)算從左往右依次進(jìn)行,有括號(hào)的,先算括號(hào)內(nèi)的,另外還要注意靈活應(yīng)用運(yùn)算律。 有理數(shù)加減、乘除混合運(yùn)算順序與數(shù)的運(yùn)算順序一樣。
五、新授
例8.計(jì)算:(1)-8+4(-2);
(2)(-7)(-5)-90(-15)。
分析:(1)按運(yùn)算順序,先做除法,再做加法。(2)先算乘、除法,然后做減法。
解:(1)-8+4(-2)
=-8+(-2) =-10
(2)(-7)(-5)-90(-15)
=35-(-6)=35+6=41
例9:某公司去年1~3月平均每月虧損1.5萬(wàn)元,4~6月平均每月盈利2萬(wàn)元,7~10月平均每月盈利1.7萬(wàn)元,11~12月平均每月虧損2.3萬(wàn)元,這個(gè)公司去年總的盈利情況如何?
分析:盈利與虧損是具有相反意義的量,我們把盈利額記為正數(shù),虧損額記為負(fù)數(shù),那么公司去年全年虧盈額就是去年1~12月的所虧損額和盈利額的和。
《有理數(shù)的除法》教案 篇8
一、課題 §2.9有理數(shù)的除法
二、教學(xué)目標(biāo)
1.使學(xué)生理解有理數(shù)倒數(shù)的意義;
2.使學(xué)生掌握有理數(shù)的除法法則,能夠熟練地進(jìn)行除法運(yùn)算;
3.培養(yǎng)學(xué)生觀察、歸納、概括及運(yùn)算能力.
三、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):有理數(shù)除法法則.
難點(diǎn):
(1)商的符號(hào)的確定.
(2)0不能作除數(shù)的理解.
四、教學(xué)手段
現(xiàn)代課堂教學(xué)手段
五、教學(xué)方法
啟發(fā)式教學(xué)
六、教學(xué)過程
(一)、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1.?dāng)⑹鲇欣頂?shù)乘法法則.
2.?dāng)⑹鲇欣頂?shù)乘法的運(yùn)算律.
3.計(jì)算:
(1)3×(-2); (2)-3×5; (3)(-2)×(-5).
(二)、導(dǎo)入新課
因?yàn)?×(-2)=-6,所以3x=-6時(shí),可以解得x=-2;
同樣-3×5=-15,解簡(jiǎn)易方程-3x=-15,得x=5.
在找x的值時(shí),就是求一個(gè)數(shù)乘以3等于-6;或者是找一個(gè)數(shù),使它乘以-3等于-15.已知一個(gè)因數(shù)的積,求另一個(gè)因數(shù),就是在小學(xué)學(xué)過的除法,除法是乘法的逆運(yùn)算.
三、講授新課
1.有埋數(shù)的倒數(shù)
0沒有倒數(shù),(0不能作除數(shù),分母是0沒有意義等概念在小學(xué)里是反復(fù)強(qiáng)調(diào)的.)
提問:怎樣求一個(gè)數(shù)的倒數(shù)?
答:整數(shù)可以看成分母是1的分?jǐn)?shù),求分?jǐn)?shù)的倒數(shù)是把這個(gè)數(shù)的分母與分子顛倒一下即可;求一個(gè)小數(shù)的倒數(shù),可以先把這個(gè)小數(shù)化成分
數(shù)再求倒數(shù).
什么性質(zhì)
所以我們說(shuō):乘積為1的兩個(gè)數(shù)互為倒數(shù),這個(gè)定義對(duì)有理數(shù)仍然適用.
這里a≠0,同小學(xué)一樣,在有理數(shù)范圍內(nèi),0不能作除數(shù),或者說(shuō)0為分母時(shí)分?jǐn)?shù)無(wú)意義.
2.有理數(shù)除法法則
利用有理數(shù)倒數(shù)的概念,我們進(jìn)一步學(xué)習(xí)有理數(shù)除法.
因?yàn)?-2)×(-4)=8,所以8÷(-4)=-2.
由此,我們可以看出小學(xué)學(xué)過的除法法則仍適用于有理數(shù)除法,即
除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù).
0不能作除數(shù).
例1 計(jì)算:
課堂練習(xí)
(1)寫出下列各數(shù)的倒數(shù):
(2)計(jì)算:
3.有理數(shù)除法的符號(hào)法則
觀察上面的練習(xí),引導(dǎo)學(xué)生總結(jié)出有理數(shù)除法的商的符號(hào)法則:
兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù).
掌握符號(hào)法則,有的題就不必再將除數(shù)化成倒數(shù)再去乘了,可以確定符號(hào)后直接相除,這就是第二個(gè)有理數(shù)除法法則:
兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除.
0除以任何一個(gè)不為0的數(shù),都得0.
≠0).利用除法法則可以化簡(jiǎn)分?jǐn)?shù).
例2 化簡(jiǎn)下列分?jǐn)?shù):
例3 計(jì)算:
(4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.
(四)、小結(jié)
1.指導(dǎo)學(xué)生看書,重點(diǎn)是除法法則.
2.引導(dǎo)學(xué)生歸納有理數(shù)除法的一般步驟:(1)確定商的符號(hào);(2)把除數(shù)化為它的倒數(shù);(3)利用乘法計(jì)算結(jié)果.
七、練習(xí)設(shè)計(jì)
習(xí)題2.12 1、2、3、4、5、6題
八、板書設(shè)計(jì)
§2.9有理數(shù)的除法
(一)知識(shí)回顧 (三)例題解析 (五)課堂小結(jié)
例1、例2
(二)觀察發(fā)現(xiàn) (四)課堂練習(xí) 練習(xí)設(shè)計(jì)
,七年級(jí)數(shù)學(xué)上冊(cè)北師大版2.9有理數(shù)的除法教案
《有理數(shù)的除法》教案 篇9
一、學(xué)習(xí)目標(biāo):
1. 熟練掌握有理數(shù)的乘法法 則
2. 會(huì)運(yùn)用乘法運(yùn)算率簡(jiǎn)化乘法運(yùn)算.
3. 了解互為倒數(shù)的意義,并會(huì)求一個(gè)非零有理數(shù)的倒數(shù)
二、學(xué)習(xí)重點(diǎn):探索有 理數(shù)乘法運(yùn)算律
學(xué)習(xí)難點(diǎn):運(yùn)用乘法運(yùn)算律簡(jiǎn)化計(jì)算
三、學(xué)習(xí)過程:
(一)、情境引入:
1、復(fù)習(xí)有理數(shù)的乘法法則(兩個(gè)因數(shù)、兩個(gè)以上的因數(shù)),并舉例說(shuō)明。
2、在含有負(fù)數(shù)的乘法運(yùn)算中,乘法交換律,結(jié)合律和分配律還成立嗎?
觀察 下列各有理數(shù)乘法,從中可得到怎樣的結(jié)論?
(1)(-6)(-7)= (-7)(-6)=
(2)[( -3)(-5)]2 = (-3)[(-5)2]=
(3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=
3、請(qǐng)?jiān)倥e幾組數(shù)試一試,看上面所得的結(jié)論是否成立?
(二)、新課講解:
有理數(shù)乘法運(yùn)算律
交換律 ab =ba
結(jié)合律 ( ab)c=a(bc)
分配律 a(b+c)=ab+ac
例1.計(jì)算:
(1)8(- )(-0.125) (2)
(3)( )(-36) (4)
例2.計(jì)算
(1)8 (2)(4)( ) (3)( )( )
觀察例2中的三個(gè)運(yùn)算, 兩個(gè)因數(shù)有什么 特點(diǎn)?它們的乘積呢?你能夠得到什么結(jié)論?
(三)、鞏固練習(xí):
1.運(yùn)用運(yùn)算律填空.
(1)-2-3=-3(_____).
(2)[-32](-4)=-3[(______)(______)].
(3)-5[-2 +-3]=-5(_____)+(_____)-3
2.選擇題
(1)若a0 ,必有 ( )
A a0 B a0 C a,b同號(hào) D a,b異號(hào)
(2)利用分配律計(jì)算 時(shí),正確的方案可以是 ( )
A B
C D
3.運(yùn)用運(yùn)算律計(jì)算:
(1)(-25)(-85)(-4) (2) 14-12-1816
(3)6037-6017+6057 (4)18-23+1323-423
(5)(-4)(-18.36) (6)(- )0.125(-2 )
(7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)
四、課堂小結(jié):
通過本節(jié)課你學(xué)到了哪些知識(shí)?你 達(dá)成學(xué)習(xí)目標(biāo)了嗎?
五、作業(yè)布置:
課本第42頁(yè)習(xí)題2.5 第3題
數(shù)學(xué)評(píng)價(jià)手冊(cè)
六 、學(xué)后記/教后記
【《有理數(shù)的除法》教案】相關(guān)文章:
有理數(shù)的除法 教案08-28
有理數(shù)的除法教案11-24
有理數(shù)的乘除法教案09-07
有理數(shù)的除法法則教案04-03
《有理數(shù)的乘除法》的教案06-21