www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    職高高一數(shù)學(xué)教案

    時(shí)間:2022-11-02 12:24:44 教案 我要投稿

    職高高一數(shù)學(xué)教案(精選16篇)

      作為一位無(wú)私奉獻(xiàn)的人民教師,通常需要準(zhǔn)備好一份教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。來(lái)參考自己需要的教案吧!以下是小編收集整理的職高高一數(shù)學(xué)教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

    職高高一數(shù)學(xué)教案(精選16篇)

      職高高一數(shù)學(xué)教案 篇1

      一、教學(xué)目標(biāo)

      1.知識(shí)與技能

      (1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。

      (2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。

      2.過(guò)程與方法

      學(xué)生通過(guò)觀察和類比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。

      3.情感態(tài)度與價(jià)值觀

      (1)提高空間想象力與直觀感受。

      (2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。

      (3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。

      二、教學(xué)重點(diǎn)、難點(diǎn)

      重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。

      三、學(xué)法與教學(xué)用具

      1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。

      2.教學(xué)用具:三角板、圓規(guī)

      四、教學(xué)思路

      (一)創(chuàng)設(shè)情景,揭示課題

      1.我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱

      把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。

      2.學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。

      (二)研探新知

      1.例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。

      畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。

      練習(xí)反饋

      根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。

      2.例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖

      教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。

      教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。

      3.探求空間幾何體的直觀圖的畫(huà)法

      (1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體ABCD-A’B’C’D’的直觀圖。

      教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。

      (2)投影出示幾何體的三視圖、課本P15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。

      4.平行投影與中心投影

      投影出示課本P17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。

      5.鞏固練習(xí),課本P16練習(xí)1(1),2,3,4

      三、歸納整理

      學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟

      四、作業(yè)

      1.書(shū)畫(huà)作業(yè),課本P17練習(xí)第5題

      職高高一數(shù)學(xué)教案 篇2

      教學(xué)目標(biāo):

      1、自我介紹,拉近師生之間的距離,為以后學(xué)習(xí)打下良好的基礎(chǔ)。

      2、了解本冊(cè)數(shù)學(xué)書(shū)的內(nèi)容,激發(fā)學(xué)習(xí)興趣。

      3、明確數(shù)學(xué)課和數(shù)學(xué)作業(yè)的要求,養(yǎng)成良好的學(xué)習(xí)行為習(xí)慣。

      4、通過(guò)講故事,悟出學(xué)習(xí)方法的重要性并掌握一些數(shù)學(xué)學(xué)習(xí)的方法和技巧。

      教學(xué)重點(diǎn)、難點(diǎn):

      1、明確自己本學(xué)期應(yīng)有的學(xué)習(xí)態(tài)度,認(rèn)真扎實(shí)地上好每一節(jié)課。

      2、悟出學(xué)習(xí)方法的重要性并掌握一些數(shù)學(xué)學(xué)習(xí)的方法和技巧。

      教學(xué)過(guò)程:

      一、導(dǎo)入——自我介紹。

      1、同學(xué)們知道這節(jié)是什么課嗎?你怎么知道的?(板書(shū):數(shù)學(xué))

      2、大家認(rèn)識(shí)我嗎?怎樣歡迎?“湯”有幾筆,你怎么數(shù)出來(lái)的?

      3、你了解湯老師什么?(根據(jù)學(xué)生的回答有針對(duì)性的互動(dòng))

      4、知道怎么聯(lián)系我嗎?背一背:(誰(shuí)能說(shuō)一說(shuō)怎么快速的記住老師的電話)

      二、認(rèn)識(shí)本學(xué)期學(xué)習(xí)任務(wù)。

      1、如果現(xiàn)在請(qǐng)你看一看數(shù)學(xué)課本的目錄,再來(lái)向大家介紹本書(shū)的內(nèi)容,你能行嗎?試一試吧。

      三、介紹本學(xué)科的相關(guān)要求。

      問(wèn)題1:上課前要做哪些準(zhǔn)備?怎樣愛(ài)護(hù)書(shū)本?

      (一)學(xué)習(xí)用品。

      1、課前準(zhǔn)備好學(xué)習(xí)用品放在左上角。(安排檢查組長(zhǎng))

      2、書(shū)本要包皮,不亂涂、亂劃、亂寫(xiě)。

      3、作業(yè)用同一種顏色的筆。

      問(wèn)題2:課堂上注意哪些紀(jì)律?在教師辦公室注意哪些紀(jì)律?

      (二)學(xué)習(xí)紀(jì)律。

      1、坐姿端正不做小動(dòng)作(慎言慎行)

      2、積極發(fā)言,聲音響亮,表達(dá)完整。

      3、老師講話時(shí)看老師,老師寫(xiě)字時(shí)看黑板。

      4、預(yù)備鈴響后馬上回座位靜候老師到來(lái)。

      5、上課遲到或進(jìn)老師辦公室喊“報(bào)告”,得到允許后方可進(jìn)入。

      6、在教師辦公室不得隨意講話,排隊(duì)三人以上時(shí),第四人應(yīng)在辦公室外等候,出一人后再進(jìn)。

      7、做作業(yè)獨(dú)立完成。討論、請(qǐng)教同學(xué)等同抄寫(xiě),在家不會(huì)寫(xiě)可以問(wèn)家長(zhǎng),家長(zhǎng)也不會(huì)的注明原因可不寫(xiě),在校可以問(wèn)老師。

      8、課間不得寫(xiě)作業(yè)(訂正除外)

      問(wèn)題3:做作業(yè)應(yīng)注意些什么?

      (三)家庭作業(yè)要求。

      1、注明時(shí)間、作業(yè)內(nèi)容;按時(shí)、按質(zhì)、按要求完成作業(yè)。

      2、每格寫(xiě)一行,做完一題空一行。

      3、訂正要重新寫(xiě),不得在原題上改;在練習(xí)冊(cè)上可以直接訂正,但要換一種顏色的筆。

      4、答題用鋼筆,字跡工整,爭(zhēng)取做到干凈、整潔、不涂改。

      5、班級(jí)姓名按照要求寫(xiě)在指定地方。

      6、連線要用直尺,畫(huà)圖要用鉛筆和直尺。

      7、當(dāng)天作業(yè)當(dāng)天訂正。全對(duì)直接交組長(zhǎng),有錯(cuò)訂正經(jīng)老師批改后交組長(zhǎng)。

      8、每天的家庭作業(yè)必須要家長(zhǎng)檢查后簽字并寫(xiě)上完成情況。

      (四)課堂作業(yè)的要求。

      1、按時(shí)、按質(zhì)、按要求完成作業(yè)。

      2、在每次寫(xiě)作業(yè)之前,先在第一行寫(xiě)上第幾次,在第二行寫(xiě)上幾月幾日、星期幾,從第三行開(kāi)始再寫(xiě)作業(yè)。

      3、認(rèn)真書(shū)寫(xiě),字跡工整,爭(zhēng)取做到干凈、整潔、不涂改。

      4、每格寫(xiě)一行,做完一題空一行。

      5、有錯(cuò)當(dāng)天及時(shí)訂正,養(yǎng)成檢查的好習(xí)慣。

      6、只用一種顏色的筆寫(xiě)作業(yè)。

      7、凡是請(qǐng)假的同學(xué),來(lái)校之后立即補(bǔ)作業(yè)并及時(shí)上交。

      四、聽(tīng)故事悟道理——介紹數(shù)學(xué)學(xué)科的學(xué)習(xí)方法。

      有個(gè)老人在河邊釣魚(yú),一個(gè)小孩走過(guò)去看他釣魚(yú),老人技巧純熟,所以沒(méi)多久就釣上了滿簍的魚(yú),老人見(jiàn)小孩很可愛(ài),要把整簍的魚(yú)送給他,小孩搖搖頭,老人驚異的問(wèn)道你為何不要?

      小孩回答:“我想要你手中的釣竿。”

      老人問(wèn):“你要釣竿做什么?”

      小孩說(shuō):“這簍魚(yú)沒(méi)多久就吃完了,要是我有釣竿,我就可以自己釣,一輩子也吃不完。”

      你們說(shuō),這個(gè)小孩是不是很聰明?

      重要的還在釣技。學(xué)習(xí),不能只記住知識(shí),更重要的是掌握方法,形成能力。下面湯老師就為大家介紹一些數(shù)學(xué)學(xué)習(xí)的方法:

      1、保持一種良好的心態(tài):當(dāng)學(xué)習(xí)遇到挫折和困難時(shí),不要退縮不要抱怨,相信自己會(huì)漸漸好起來(lái)的。

      2、學(xué)會(huì)合理安排時(shí)間。一定要積極的利用一些零碎的時(shí)間回憶的知識(shí),如果錯(cuò)了或不知道了看看課本。

      3、數(shù)學(xué)預(yù)習(xí)不能少。數(shù)學(xué)聽(tīng)不懂的重要原因就是上新課時(shí)前邊學(xué)過(guò)的知識(shí)還沒(méi)有弄懂或者舊知識(shí)已被遺忘了。而預(yù)習(xí)可以為上課做好準(zhǔn)備,從而讓學(xué)生能主動(dòng)的聽(tīng)課,能帶著問(wèn)題聽(tīng)課。

      4、聽(tīng)課要專注。人只有在專注時(shí)才能進(jìn)入最佳學(xué)習(xí)狀態(tài)。

      一要端正課堂學(xué)習(xí)的態(tài)度,盡快進(jìn)入學(xué)習(xí)的狀態(tài)。

      (1)多思考,思考是數(shù)學(xué)學(xué)習(xí)方法的核心。

      (2)多動(dòng)手,幫助學(xué)習(xí)知識(shí),運(yùn)用做到融會(huì)貫通。

      (3)培養(yǎng)創(chuàng)造精神,所謂創(chuàng)造,就是想出新辦法,就要不局限于老師、課本講的方法。平時(shí),有一些難度高的題目,我在聽(tīng)懂了老師講的方法后,還要自己去找一找有沒(méi)有另外的解法,這樣能加深對(duì)題目的理解。

      二要積極提問(wèn)和回答問(wèn)題,爭(zhēng)取回答的機(jī)會(huì)。答得越多,學(xué)習(xí)的興趣也會(huì)越大。

      (1)課后復(fù)習(xí)要及時(shí)。課堂上學(xué)會(huì)了的知識(shí),課后還會(huì)忘記,有時(shí)很快就忘記。因此,只有及時(shí)復(fù)習(xí),才能降低遺忘,鞏固所學(xué)知識(shí),復(fù)習(xí)的方法是先看課本,然后再做習(xí)題,而做完作業(yè)后,歸納知識(shí)點(diǎn)和方法。

      (2)選擇一本適合自己的數(shù)學(xué)參考書(shū):在掌握好教材的基礎(chǔ)上,仔細(xì)研究一本參考書(shū),不必多,選擇一本適合自己的,隨著學(xué)習(xí)進(jìn)度,仔細(xì)研讀就可以了。

      (3)周末復(fù)習(xí)很重要:到周末,有必要對(duì)一周的學(xué)習(xí)內(nèi)容進(jìn)行總結(jié)和復(fù)習(xí)。

      五、全課小結(jié)。

      少壯不努力,一生不給力!新的學(xué)期,新的征程。愿我們?cè)诖然行男W(xué)五年級(jí)四班這個(gè)溫暖幸福的小家庭里,快樂(lè)每一天,進(jìn)步每一天,收獲每一天!

      職高高一數(shù)學(xué)教案 篇3

      教學(xué)目標(biāo):

      ①掌握對(duì)數(shù)函數(shù)的性質(zhì)。

      ②應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的定義域、值 域及單調(diào)性。

      ③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高

      解題能力。

      教學(xué)重點(diǎn)與難點(diǎn):

      對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

      教學(xué)過(guò)程設(shè)計(jì):

      ⒈復(fù)習(xí)提問(wèn):對(duì)數(shù)函數(shù)的概念及性質(zhì)。

      ⒉開(kāi)始正課

      1 比較數(shù)的大小

      例 1 比較下列各組數(shù)的大小。

      ⑴loga5.1 ,loga5.9 (a>0,a≠1)

      ⑵log0.50.6 ,logЛ0.5 ,lnЛ

      師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?

      生:這兩個(gè)對(duì)數(shù)底相等。

      師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?

      生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

      師:對(duì),請(qǐng)敘述一下這道題的解題過(guò)程。

      生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大小:當(dāng)0

      調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞

      增,所以loga5.1

      板書(shū):

      解:Ⅰ)當(dāng)0

      ∵5.1<5.9 loga5.1="">loga5.9

      Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),

      ∵5.1<5.9 ∴l(xiāng)oga5.1

      師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?

      生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

      師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?

      生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

      log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

      板書(shū):略。

      師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函

      數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)

      函數(shù)圖象的位置關(guān)系來(lái)比大小。

      2 函數(shù)的定義域, 值 域及單調(diào)性。

      職高高一數(shù)學(xué)教案 篇4

      教學(xué)目標(biāo)

      1、掌握平面向量的數(shù)量積及其幾何意義;

      2、掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

      3、了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;

      4、掌握向量垂直的條件、

      教學(xué)重難點(diǎn)

      教學(xué)重點(diǎn):平面向量的數(shù)量積定義

      教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

      教學(xué)過(guò)程

      1、平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,

      則數(shù)量|a||b|cosq叫a與b的數(shù)量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π)、

      并規(guī)定0向量與任何向量的數(shù)量積為0、

      ×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?

      2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?

      (1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定、

      (2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分、符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替、

      (3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0、因?yàn)槠渲衏osq有可能為0、

      職高高一數(shù)學(xué)教案 篇5

      【內(nèi)容與解析】

      本節(jié)課要學(xué)的內(nèi)容有函數(shù)的概念指的是函數(shù)的概念及符號(hào)的理解,理解它關(guān)鍵就是能用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用。學(xué)生已經(jīng)學(xué)過(guò)了集合并且初中對(duì)函數(shù)的概念已經(jīng)作了介紹,本節(jié)課的內(nèi)容函數(shù)的概念就是在此基礎(chǔ)上的發(fā)展的。由于它還與基本初等函數(shù)和函數(shù)模型等內(nèi)容有必要的聯(lián)系,所以在本學(xué)科有著很重要的地位,是學(xué)習(xí)后面知識(shí)的基礎(chǔ),是本學(xué)科的核心內(nèi)容。教學(xué)的重點(diǎn)是函數(shù)的概念,函數(shù)的三要素,所以解決重點(diǎn)的關(guān)鍵是通過(guò)實(shí)例領(lǐng)悟構(gòu)成函數(shù)的三個(gè)要素;會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域。

      【教學(xué)目標(biāo)與解析】

      1、教學(xué)目標(biāo)

      (1)理解函數(shù)的概念;

      (2)了解區(qū)間的概念;

      2、目標(biāo)解析

      (1)理解函數(shù)的概念就是指能用集合與對(duì)應(yīng)的語(yǔ)言刻畫(huà)函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫(huà)函數(shù)概念中的作用;

      (2)了解區(qū)間的概念就是指能夠體會(huì)用區(qū)間表示數(shù)集的意義和作用;

      【問(wèn)題診斷分析】

      在本節(jié)課的教學(xué)中,學(xué)生可能遇到的問(wèn)題是函數(shù)的概念及符號(hào)的理解,產(chǎn)生這一問(wèn)題的原因是:函數(shù)本身就是一個(gè)抽象的概念,對(duì)學(xué)生來(lái)說(shuō)一個(gè)難點(diǎn)。要解決這一問(wèn)題,就要在通過(guò)從實(shí)際問(wèn)題中抽象概況函數(shù)的概念,培養(yǎng)學(xué)生的抽象概況能力,其中關(guān)鍵是理論聯(lián)系實(shí)際,把抽象轉(zhuǎn)化為具體。

      【教學(xué)過(guò)程】

      問(wèn)題1:一枚炮彈發(fā)射后,經(jīng)過(guò)26s落到地面擊中目標(biāo).炮彈的射高為845m,且炮彈距離地面的高度h(單位:m)隨時(shí)間t(單位:s)變化的規(guī)律是:h=130t-5t2.

      1.1這里的變量t的變化范圍是什么?變量h的變化范圍是什么?試用集合表示?

      1.2高度變量h與時(shí)間變量t之間的對(duì)應(yīng)關(guān)系是否為函數(shù)?若是,其自變量是什么?

      設(shè)計(jì)意圖:通過(guò)以上問(wèn)題,讓學(xué)生正確理解讓學(xué)生體會(huì)用解析式或圖象刻畫(huà)兩個(gè)變量之間的依賴關(guān)系,從問(wèn)題的實(shí)際意義可知,在t的變化范圍內(nèi)任給一個(gè)t,按照給定的對(duì)應(yīng)關(guān)系,都有唯一的一個(gè)高度h與之對(duì)應(yīng)。

      問(wèn)題2:分析教科書(shū)中的實(shí)例(2),引導(dǎo)學(xué)生看圖并啟發(fā):在t的變化t按照給定的圖象,都有唯一的一個(gè)臭氧層空洞面積S與之相對(duì)應(yīng)。

      問(wèn)題3:要求學(xué)生仿照實(shí)例(1)、(2),描述實(shí)例(3)中恩格爾系數(shù)和時(shí)間的關(guān)系。

      設(shè)計(jì)意圖:通過(guò)這些問(wèn)題,讓學(xué)生理解得到函數(shù)的定義,培養(yǎng)學(xué)生的歸納、概況的能力。

      問(wèn)題4:上述三個(gè)實(shí)例中變量之間的關(guān)系都是函數(shù),那么從集合與對(duì)應(yīng)的觀點(diǎn)分析,函數(shù)還可以怎樣定義?

      4.1在一個(gè)函數(shù)中,自變量x和函數(shù)值y的變化范圍都是集合,這兩個(gè)集合分別叫什么名稱?

      4.2在從集合A到集合B的一個(gè)函數(shù)f:A→B中,集合A是函數(shù)的定義域,集合B是函數(shù)的值域嗎?怎樣理解f(x)=1,x∈R?

      4.3一個(gè)函數(shù)由哪幾個(gè)部分組成?如果給定函數(shù)的定義域和對(duì)應(yīng)關(guān)系,那么函數(shù)的值域確定嗎??jī)蓚(gè)函數(shù)相等的條件是什么?

      【例題】:

      例1求下列函數(shù)的定義域

      分析:求定義域就是使式子有意義的x的取值所構(gòu)成的集合;定義域一定是集合!

      例2已知函數(shù)

      分析:理解函數(shù)f(x)的意義

      例3下列函數(shù)中哪個(gè)與函數(shù)相等?

      例4在下列各組函數(shù)中與是否相等?為什么?

      分析:

      (1)兩個(gè)函數(shù)相等,要求定義域和對(duì)應(yīng)關(guān)系都一致;

      (2)用x還是用其它字母來(lái)表示自變量對(duì)函數(shù)實(shí)質(zhì)而言沒(méi)有影響.

      【課堂目標(biāo)檢1測(cè)】

      教科書(shū)第19頁(yè)1、2.

      【課堂小結(jié)】

      1、理解函數(shù)的定義,函數(shù)的三要素,會(huì)球簡(jiǎn)單的函數(shù)的定義域和函數(shù)值;

      2、理解區(qū)間是表示數(shù)集的一種方法,會(huì)把不等式轉(zhuǎn)化為區(qū)間。

      職高高一數(shù)學(xué)教案 篇6

      一、教材

      《直線與圓的位置關(guān)系》是高中人教版必修2第四章第二節(jié)的內(nèi)容,直線和圓的位置關(guān)系是本章的重點(diǎn)內(nèi)容之一。從知識(shí)體系上看,它既是點(diǎn)與圓的位置關(guān)系的延續(xù)與提高,又是學(xué)習(xí)切線的判定定理、圓與圓的位置關(guān)系的基礎(chǔ)。從數(shù)學(xué)思想方法層面上看它運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)揭示了知識(shí)的發(fā)生過(guò)程以及相關(guān)知識(shí)間的內(nèi)在聯(lián)系,滲透了數(shù)形結(jié)合、分類討論、類比、化歸等數(shù)學(xué)思想方法,有助于提高學(xué)生的思維品質(zhì)。

      二、學(xué)情

      學(xué)生初中已經(jīng)接觸過(guò)直線與圓相交、相切、相離的定義和判定;且在上節(jié)的學(xué)習(xí)過(guò)程中掌握了點(diǎn)的坐標(biāo)、直線的方程、圓的方程以及點(diǎn)到直線的距離公式;掌握利用方程組的方法來(lái)求直線的交點(diǎn);具有用坐標(biāo)法研究點(diǎn)與圓的位置關(guān)系的基礎(chǔ);具有一定的數(shù)形結(jié)合解題思想的基礎(chǔ)。

      三、教學(xué)目標(biāo)

      (一)知識(shí)與技能目標(biāo)

      能夠準(zhǔn)確用圖形表示出直線與圓的三種位置關(guān)系;可以利用聯(lián)立方程的方法和求點(diǎn)到直線的距離的方法簡(jiǎn)單判斷出直線與圓的關(guān)系。

      (二)過(guò)程與方法目標(biāo)

      經(jīng)歷操作、觀察、探索、總結(jié)直線與圓的位置關(guān)系的判斷方法,從而鍛煉觀察、比較、概括的邏輯思維能力。

      (三)情感態(tài)度價(jià)值觀目標(biāo)

      激發(fā)求知欲和學(xué)習(xí)興趣,鍛煉積極探索、發(fā)現(xiàn)新知識(shí)、總結(jié)規(guī)律的能力,解題時(shí)養(yǎng)成歸納總結(jié)的良好習(xí)慣。

      四、教學(xué)重難點(diǎn)

      (一)重點(diǎn)

      用解析法研究直線與圓的位置關(guān)系。

      (二)難點(diǎn)

      體會(huì)用解析法解決問(wèn)題的數(shù)學(xué)思想。

      五、教學(xué)方法

      根據(jù)本節(jié)課教材內(nèi)容的特點(diǎn),為了更直觀、形象地突出重點(diǎn),突破難點(diǎn),借助信息技術(shù)工具,以幾何畫(huà)板為平臺(tái),通過(guò)圖形的動(dòng)態(tài)演示,變抽象為直觀,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持.在教學(xué)中采用小組合作學(xué)習(xí)的方式,這樣可以為不同認(rèn)知基礎(chǔ)的學(xué)生提供學(xué)習(xí)機(jī)會(huì),同時(shí)有利于發(fā)揮各層次學(xué)生的作用,教師始終堅(jiān)持啟發(fā)式教學(xué)原則,設(shè)計(jì)一系列問(wèn)題串,以引導(dǎo)學(xué)生的數(shù)學(xué)思維活動(dòng)。

      六、教學(xué)過(guò)程

      (一)導(dǎo)入新課

      教師借助多媒體創(chuàng)設(shè)泰坦尼克號(hào)的情景,并從中抽象出數(shù)學(xué)模型:已知冰山的分布是一個(gè)半徑為r的圓形區(qū)域,圓心位于輪船正西的l處,問(wèn),輪船如何航行能夠避免撞到冰山呢?如何行駛便又會(huì)撞到冰山呢?

      教師引導(dǎo)學(xué)生回顧初中已經(jīng)學(xué)習(xí)的直線與圓的位置關(guān)系,將所想到的航行路線轉(zhuǎn)化成數(shù)學(xué)簡(jiǎn)圖,即相交、相切、相離。

      設(shè)計(jì)意圖:在已有的知識(shí)基礎(chǔ)上,提出新的問(wèn)題,有利于保持學(xué)生知識(shí)結(jié)構(gòu)的連續(xù)性,同時(shí)開(kāi)闊視野,激發(fā)學(xué)生的學(xué)習(xí)興趣。

      (二)新課教學(xué)——探究新知

      教師提問(wèn)如何判斷直線與圓的位置關(guān)系,學(xué)生先獨(dú)立思考幾分鐘,然后同桌兩人為一組交流,并整理出本組同學(xué)所想到的思路。在整個(gè)交流討論中,教師既要有對(duì)正確認(rèn)識(shí)的贊賞,又要有對(duì)錯(cuò)誤見(jiàn)解的分析及對(duì)該學(xué)生的鼓勵(lì)。

      判斷方法:

      (1)定義法:看直線與圓公共點(diǎn)個(gè)數(shù)

      即研究方程組解的個(gè)數(shù),具體做法是聯(lián)立兩個(gè)方程,消去x(或y)后所得一元二次方程,判斷△和0的大小關(guān)系。

      (2)比較法:圓心到直線的距離d與圓的半徑r做比較,

      (三)合作探究——深化新知

      教師進(jìn)一步拋出疑問(wèn),對(duì)比兩種方法,由學(xué)生觀察實(shí)踐發(fā)現(xiàn),兩種方法本質(zhì)相同,但比較法只適合于直線與圓,而定義法適用范圍更廣。教師展示較為基礎(chǔ)的題目,學(xué)生解答,總結(jié)思路。

      已知直線3x+4y-5=0與圓x2+y2=1,判斷它們的位置關(guān)系?

      讓學(xué)生自主探索,討論交流,并闡述自己的解題思路。

      當(dāng)已知了直線與圓的方程之后,圓心坐標(biāo)和半徑r易得到,問(wèn)題的關(guān)鍵是如何得到圓心到直線的距離d,他的本質(zhì)是點(diǎn)到直線的距離,便可以直接利用點(diǎn)到直線的距離公式求d。類比前面所學(xué)利用直線方程求兩直線交點(diǎn)的方法,聯(lián)立直線與圓的方程,組成方程組,通過(guò)方程組解得個(gè)數(shù)確定直線與圓的交點(diǎn)個(gè)數(shù),進(jìn)一步確定他們的位置關(guān)系。最后明確解題步驟。

      (四)歸納總結(jié)——鞏固新知

      為了將結(jié)論由特殊推廣到一般引導(dǎo)學(xué)生思考:

      可由方程組的解的不同情況來(lái)判斷:

      當(dāng)方程組有兩組實(shí)數(shù)解時(shí),直線l與圓C相交;

      當(dāng)方程組有一組實(shí)數(shù)解時(shí),直線l與圓C相切;

      當(dāng)方程組沒(méi)有實(shí)數(shù)解時(shí),直線l與圓C相離。

      活動(dòng):我將抽取兩位同學(xué)在黑板上扮演,并在巡視過(guò)程中對(duì)部分學(xué)生加以指導(dǎo)。最后對(duì)黑板上的兩名學(xué)生的解題過(guò)程加以分析完善。通過(guò)對(duì)基礎(chǔ)題的練習(xí),鞏固兩種判斷直線與圓的位置關(guān)系判斷方法,并使每一個(gè)學(xué)生獲得后續(xù)學(xué)習(xí)的信心。

      (五)小結(jié)作業(yè)

      在小結(jié)環(huán)節(jié),我會(huì)以口頭提問(wèn)的方式:

      (1)這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

      (2)在數(shù)學(xué)問(wèn)題的解決過(guò)程中運(yùn)用了哪些數(shù)學(xué)思想?

      設(shè)計(jì)意圖:?jiǎn)l(fā)式的課堂小結(jié)方式能讓學(xué)生主動(dòng)回顧本節(jié)課所學(xué)的知識(shí)點(diǎn)。也促使學(xué)生對(duì)知識(shí)網(wǎng)絡(luò)進(jìn)行主動(dòng)建構(gòu)。

      作業(yè):在學(xué)生回顧本堂學(xué)習(xí)內(nèi)容明確兩種解題思路后,教師讓學(xué)生對(duì)比兩種解法,那種更簡(jiǎn)捷,明確本節(jié)課主要用比較d與r的關(guān)系來(lái)解決這類問(wèn)題,對(duì)用方程組解的個(gè)數(shù)的判斷方法,要求學(xué)生課外做進(jìn)一步的探究,下一節(jié)課匯報(bào)。

      七、板書(shū)設(shè)計(jì)

      我的板書(shū)本著簡(jiǎn)介、直觀、清晰的原則,這就是我的板書(shū)設(shè)計(jì)。

      職高高一數(shù)學(xué)教案 篇7

      教材

      邏輯聯(lián)結(jié)詞

      目的

      要求學(xué)生了解復(fù)合命題的意義,并能指出一個(gè)復(fù)合命題是有哪些簡(jiǎn)單命題與邏輯聯(lián)結(jié)詞,并能由簡(jiǎn)單命題構(gòu)成含有邏輯聯(lián)結(jié)詞的復(fù)合命題。

      過(guò)程

      一、提出課題:

      簡(jiǎn)單邏輯、邏輯聯(lián)結(jié)詞

      二、命題的概念:

      例:125 ① 3是12的約數(shù) ② 0.5是整數(shù) ③

      定義:可以判斷真假的語(yǔ)句叫命題。正確的叫真命題,錯(cuò)誤的叫假命題。

      如:①②是真命題,③是假命題

      反例:3是12的約數(shù)嗎? x5 都不是命題

      不涉及真假(問(wèn)題) 無(wú)法判斷真假

      上述①②③是簡(jiǎn)單命題。 這種含有變量的語(yǔ)句叫開(kāi)語(yǔ)句(條件命題)。

      三、復(fù)合命題:

      1.定義:由簡(jiǎn)單命題再加上一些邏輯聯(lián)結(jié)詞構(gòu)成的命題叫復(fù)合命題。

      2.例:

      (1)10可以被2或5整除④ 10可以被2整除或10可以被5整除

      (2)菱形的對(duì)角線互相 菱形的對(duì)角線互相垂直且菱形的

      垂直且平分⑤ 對(duì)角線互相平分

      (3)0.5非整數(shù)⑥ 非0.5是整數(shù)

      觀察:形成概念:簡(jiǎn)單命題在加上或且非這些邏輯聯(lián)結(jié)詞成復(fù)合命題。

      3.其實(shí),有些概念前面已遇到過(guò)

      如:或:不等式 x2x60的解集 { x | x2或x3 }

      且:不等式 x2x60的解集 { x | 23 } 即 { x | x2且x3 }

      四、復(fù)合命題的構(gòu)成形式

      如果用 p, q, r, s表示命題,則復(fù)合命題的形式接觸過(guò)的有以下三種:

      即: p或q (如 ④) 記作 pq

      p且q (如 ⑤) 記作 pq

      非p (命題的否定) (如 ⑥) 記作 p

      小結(jié):1.命題 2.復(fù)合命題 3.復(fù)合命題的構(gòu)成形式

      職高高一數(shù)學(xué)教案 篇8

      一、教學(xué)目標(biāo)

      1.掌握二次根式的性質(zhì)

      2.能夠利用二次根式的性質(zhì)化簡(jiǎn)二次根式

      3.通過(guò)本節(jié)的學(xué)習(xí)滲透分類討論的數(shù)學(xué)思想和方法

      二、教學(xué)設(shè)計(jì)

      對(duì)比、歸納、總結(jié)

      三、重點(diǎn)和難點(diǎn)

      1.重點(diǎn):理解并掌握二次根式的性質(zhì)

      2.難點(diǎn):理解式子中的可以取任意實(shí)數(shù),并能根據(jù)字母的取值范圍正確地化簡(jiǎn)有關(guān)的二次根式.

      四、課時(shí)安排

      1課時(shí)

      五、教B具學(xué)具準(zhǔn)備

      投影儀、膠片、多媒體

      六、師生互動(dòng)活動(dòng)設(shè)計(jì)

      復(fù)習(xí)對(duì)比,歸納整理,應(yīng)用提高,以學(xué)生活動(dòng)為主

      七、教學(xué)過(guò)程

      一、導(dǎo)入新課

      我們知道,式子()表示非負(fù)數(shù)的算術(shù)平方根.

      問(wèn):式子的意義是什么?被開(kāi)方數(shù)中的表示的是什么數(shù)?

      答:式子表示非負(fù)數(shù)的`算術(shù)平方根,即,且,從而可以取任意實(shí)數(shù).

      二、新課

      計(jì)算下列各題,并回答以下問(wèn)題:

      (1);(2);(3);

      1.各小題中被開(kāi)方數(shù)的冪的底數(shù)都是什么數(shù)?

      2.各小題的結(jié)果和相應(yīng)的被開(kāi)方數(shù)的冪的底數(shù)有什么關(guān)系?

      3.用字母表示被開(kāi)方數(shù)的冪的底數(shù),將有怎樣的結(jié)論?并用語(yǔ)言敘述你的結(jié)論.

      職高高一數(shù)學(xué)教案 篇9

      教學(xué)目標(biāo):

      1、理解對(duì)數(shù)的概念,能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化;

      2、滲透應(yīng)用意識(shí),培養(yǎng)歸納思維能力和邏輯推理能力,提高數(shù)學(xué)發(fā)現(xiàn)能力。

      教學(xué)重點(diǎn):

      對(duì)數(shù)的概念

      教學(xué)過(guò)程:

      一、問(wèn)題情境:

      1、(1)莊子:一尺之棰,日取其半,萬(wàn)世不竭、①取5次,還有多長(zhǎng)?②取多少次,還有0、125尺?

      (2)假設(shè)2002年我國(guó)國(guó)民生產(chǎn)總值為a億元,如果每年平均增長(zhǎng)8%,那么經(jīng)過(guò)多少年國(guó)民生產(chǎn)總值是2002年的2倍?

      抽象出:1=?,=0.125x=?2=2x=?

      2、問(wèn)題:已知底數(shù)和冪的值,如何求指數(shù)?你能看得出來(lái)嗎?

      二、學(xué)生活動(dòng):

      1、討論問(wèn)題,探究求法、

      2、概括內(nèi)容,總結(jié)對(duì)數(shù)概念、

      3、研究指數(shù)與對(duì)數(shù)的關(guān)系、

      三、建構(gòu)數(shù)學(xué):

      1)引導(dǎo)學(xué)生自己總結(jié)并給出對(duì)數(shù)的概念、

      2)介紹對(duì)數(shù)的表示方法,底數(shù)、真數(shù)的含義、

      3)指數(shù)式與對(duì)數(shù)式的關(guān)系、

      4)常用對(duì)數(shù)與自然對(duì)數(shù)、

      探究:

      ⑴負(fù)數(shù)與零沒(méi)有對(duì)數(shù)、

      ⑵,、

      ⑶對(duì)數(shù)恒等式(教材P58練習(xí)6)

      ①;②、

      ⑷兩種對(duì)數(shù):

      ①常用對(duì)數(shù):;

      ②自然對(duì)數(shù):、

      (5)底數(shù)的取值范圍為;真數(shù)的取值范圍為、

      四、數(shù)學(xué)運(yùn)用:

      1、例題:

      例1、(教材P57例1)將下列指數(shù)式改寫(xiě)成對(duì)數(shù)式:

      (1)=16;(2)=;(3)=20;(4)=0、45、

      例2、(教材P57例2)將下列對(duì)數(shù)式改寫(xiě)成指數(shù)式:

      (1);(2)3=—2;(3);(4)(補(bǔ)充)ln10=2、303

      例3、(教材P57例3)求下列各式的值:

      ⑴;⑵;⑶(補(bǔ)充)、

      2、練習(xí):

      P58(練習(xí))1,2,3,4,5、

      五、回顧小結(jié):

      本節(jié)課學(xué)習(xí)了以下內(nèi)容:

      ⑴對(duì)數(shù)的定義;

      ⑵指數(shù)式與對(duì)數(shù)式互換;

      ⑶求對(duì)數(shù)式的值(利用計(jì)算器求對(duì)數(shù)值)、

      六、課外作業(yè):P63習(xí)題1,2,3,4、

      職高高一數(shù)學(xué)教案 篇10

      教學(xué)目標(biāo)

      1.理解等比數(shù)列的概念,掌握等比數(shù)列的通項(xiàng)公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題.

      (1)正確理解等比數(shù)列的定義,了解公比的概念,明確一個(gè)數(shù)列是等比數(shù)列的限定條件,能根據(jù)定義判斷一個(gè)數(shù)列是等比數(shù)列,了解等比中項(xiàng)的概念;

      (2)正確認(rèn)識(shí)使用等比數(shù)列的表示法,能靈活運(yùn)用通項(xiàng)公式求等比數(shù)列的首項(xiàng)、公比、項(xiàng)數(shù)及指定的項(xiàng);

      (3)通過(guò)通項(xiàng)公式認(rèn)識(shí)等比數(shù)列的性質(zhì),能解決某些實(shí)際問(wèn)題.

      2.通過(guò)對(duì)等比數(shù)列的研究,逐步培養(yǎng)學(xué)生觀察、類比、歸納、猜想等思維品質(zhì).

      3.通過(guò)對(duì)等比數(shù)列概念的歸納,進(jìn)一步培養(yǎng)學(xué)生嚴(yán)密的思維習(xí)慣,以及實(shí)事求是的科學(xué)態(tài)度.

      教學(xué)建議

      教材分析

      (1)知識(shí)結(jié)構(gòu)

      等比數(shù)列是另一個(gè)簡(jiǎn)單常見(jiàn)的數(shù)列,研究?jī)?nèi)容可與等差數(shù)列類比,首先歸納出等比數(shù)列的定義,導(dǎo)出通項(xiàng)公式,進(jìn)而研究圖像,又給出等比中項(xiàng)的概念,最后是通項(xiàng)公式的應(yīng)用.

      (2)重點(diǎn)、難點(diǎn)分析

      教學(xué)重點(diǎn)是等比數(shù)列的定義和對(duì)通項(xiàng)公式的認(rèn)識(shí)與應(yīng)用,教學(xué)難點(diǎn)在于等比數(shù)列通項(xiàng)公式的推導(dǎo)和運(yùn)用.

      ①與等差數(shù)列一樣,等比數(shù)列也是特殊的數(shù)列,二者有許多相同的性質(zhì),但也有明顯的區(qū)別,可根據(jù)定義與通項(xiàng)公式得出等比數(shù)列的特性,這些是教學(xué)的重點(diǎn).

      ②雖然在等差數(shù)列的學(xué)習(xí)中曾接觸過(guò)不完全歸納法,但對(duì)學(xué)生來(lái)說(shuō)仍然不熟悉;在推導(dǎo)過(guò)程中,需要學(xué)生有一定的觀察分析猜想能力;第一項(xiàng)是否成立又須補(bǔ)充說(shuō)明,所以通項(xiàng)公式的推導(dǎo)是難點(diǎn).

      ③對(duì)等差數(shù)列、等比數(shù)列的綜合研究離不開(kāi)通項(xiàng)公式,因而通項(xiàng)公式的靈活運(yùn)用既是重點(diǎn)又是難點(diǎn).

      教學(xué)建議

      (1)建議本節(jié)課分兩課時(shí),一節(jié)課為等比數(shù)列的概念,一節(jié)課為等比數(shù)列通項(xiàng)公式的應(yīng)用.

      (2)等比數(shù)列概念的引入,可給出幾個(gè)具體的例子,由學(xué)生概括這些數(shù)列的相同特征,從而得到等比數(shù)列的定義.也可將幾個(gè)等差數(shù)列和幾個(gè)等比數(shù)列混在一起給出,由學(xué)生將這些數(shù)列進(jìn)行分類,有一種是按等差、等比來(lái)分的,由此對(duì)比地概括等比數(shù)列的定義.

      (3)根據(jù)定義讓學(xué)生分析等比數(shù)列的公比不為0,以及每一項(xiàng)均不為0的特性,加深對(duì)概念的理解.

      (4)對(duì)比等差數(shù)列的表示法,由學(xué)生歸納等比數(shù)列的各種表示法. 啟發(fā)學(xué)生用函數(shù)觀點(diǎn)認(rèn)識(shí)通項(xiàng)公式,由通項(xiàng)公式的結(jié)構(gòu)特征畫(huà)數(shù)列的圖象.

      (5)由于有了等差數(shù)列的研究經(jīng)驗(yàn),等比數(shù)列的研究完全可以放手讓學(xué)生自己解決,教師只需把握課堂的節(jié)奏,作為一節(jié)課的組織者出現(xiàn).

      (6)可讓學(xué)生相互出題,解題,講題,充分發(fā)揮學(xué)生的主體作用.

      教學(xué)設(shè)計(jì)示例

      課題:等比數(shù)列的概念

      教學(xué)目標(biāo)

      1.通過(guò)教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項(xiàng)公式.

      2.使學(xué)生進(jìn)一步體會(huì)類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力.

      3.培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度.

      教學(xué)重點(diǎn),難點(diǎn)

      重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項(xiàng)公式的推導(dǎo).

      教學(xué)用具

      投影儀,多媒體軟件,電腦.

      教學(xué)方法

      討論、談話法.

      教學(xué)過(guò)程

      一、提出問(wèn)題

      給出以下幾組數(shù)列,將它們分類,說(shuō)出分類標(biāo)準(zhǔn).(幻燈片)

      ①-2,1,4,7,10,13,16,19,…

      ②8,16,32,64,128,256,…

      ③1,1,1,1,1,1,1,…

      ④243,81,27,9,3,1, , ,…

      ⑤31,29,27,25,23,21,19,…

      ⑥1,-1,1,-1,1,-1,1,-1,…

      ⑦1,-10,100,-1000,10000,-100000,…

      ⑧0,0,0,0,0,0,0,…

      由學(xué)生發(fā)表意見(jiàn)(可能按項(xiàng)與項(xiàng)之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動(dòng)數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無(wú)妨,得出定義后再考察③是否為等比數(shù)列).

      二、講解新課

      請(qǐng)學(xué)生說(shuō)出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲(chóng)分裂問(wèn)題.假設(shè)每經(jīng)過(guò)一個(gè)單位時(shí)間每個(gè)變形蟲(chóng)都分裂為兩個(gè)變形蟲(chóng),再假設(shè)開(kāi)始有一個(gè)變形蟲(chóng),經(jīng)過(guò)一個(gè)單位時(shí)間它分裂為兩個(gè)變形蟲(chóng),經(jīng)過(guò)兩個(gè)單位時(shí)間就有了四個(gè)變形蟲(chóng),…,一直進(jìn)行下去,記錄下每個(gè)單位時(shí)間的變形蟲(chóng)個(gè)數(shù)得到了一列數(shù) 這個(gè)數(shù)列也具有前面的幾個(gè)數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列. (這里播放變形蟲(chóng)分裂的多媒體軟件的第一步)

      等比數(shù)列(板書(shū))

      1.等比數(shù)列的定義(板書(shū))

      根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義.學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來(lái)的.教師寫(xiě)出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語(yǔ).

      請(qǐng)學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無(wú)數(shù)列既是等差數(shù)列又是等比數(shù)列.學(xué)生通過(guò)觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問(wèn),還有沒(méi)有其他的例子,讓學(xué)生再舉兩例.而后請(qǐng)學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說(shuō)形如 的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng) 時(shí),數(shù)列 既是等差又是等比數(shù)列,當(dāng) 時(shí),它只是等差數(shù)列,而不是等比數(shù)列.教師追問(wèn)理由,引出對(duì)等比數(shù)列的認(rèn)識(shí):

      2.對(duì)定義的認(rèn)識(shí)(板書(shū))

      (1)等比數(shù)列的首項(xiàng)不為0;

      (2)等比數(shù)列的每一項(xiàng)都不為0,即 ;

      問(wèn)題:一個(gè)數(shù)列各項(xiàng)均不為0是這個(gè)數(shù)列為等比數(shù)列的什么條件?

      (3)公比不為0.

      用數(shù)學(xué)式子表示等比數(shù)列的定義.

      是等比數(shù)列 ①.在這個(gè)式子的寫(xiě)法上可能會(huì)有一些爭(zhēng)議,如寫(xiě)成 ,可讓學(xué)生研究行不行,好不好;接下來(lái)再問(wèn),能否改寫(xiě)為 是等比數(shù)列 ?為什么不能?

      式子 給出了數(shù)列第 項(xiàng)與第 項(xiàng)的數(shù)量關(guān)系,但能否確定一個(gè)等比數(shù)列?(不能)確定一個(gè)等比數(shù)列需要幾個(gè)條件?當(dāng)給定了首項(xiàng)及公比后,如何求任意一項(xiàng)的值?所以要研究通項(xiàng)公式.

      3.等比數(shù)列的通項(xiàng)公式(板書(shū))

      問(wèn)題:用 和 表示第 項(xiàng) .

      ①不完全歸納法

      ②疊乘法

      ,… , ,這 個(gè)式子相乘得 ,所以 .

      (板書(shū))(1)等比數(shù)列的通項(xiàng)公式

      得出通項(xiàng)公式后,讓學(xué)生思考如何認(rèn)識(shí)通項(xiàng)公式.

      (板書(shū))(2)對(duì)公式的認(rèn)識(shí)

      由學(xué)生來(lái)說(shuō),最后歸結(jié):

      ①函數(shù)觀點(diǎn);

      ②方程思想(因在等差數(shù)列中已有認(rèn)識(shí),此處再?gòu)?fù)習(xí)鞏固而已).

      這里強(qiáng)調(diào)方程思想解決問(wèn)題.方程中有四個(gè)量,知三求一,這是公式最簡(jiǎn)單的應(yīng)用,請(qǐng)學(xué)生舉例(應(yīng)能編出四類問(wèn)題).解題格式是什么?(不僅要會(huì)解題,還要注意規(guī)范表述的訓(xùn)練)

      如果增加一個(gè)條件,就多知道了一個(gè)量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究.同學(xué)可以試著編幾道題.

      三、小結(jié)

      1.本節(jié)課研究了等比數(shù)列的概念,得到了通項(xiàng)公式;

      2.注意在研究?jī)?nèi)容與方法上要與等差數(shù)列相類比;

      3.用方程的思想認(rèn)識(shí)通項(xiàng)公式,并加以應(yīng)用.

      職高高一數(shù)學(xué)教案 篇11

      一、教學(xué)目標(biāo)

      1、知識(shí)與技能

      (1)通過(guò)實(shí)物操作,增強(qiáng)學(xué)生的直觀感知。

      (2)能根據(jù)幾何結(jié)構(gòu)特征對(duì)空間物體進(jìn)行分類。

      (3)會(huì)用語(yǔ)言概述棱柱、棱錐、圓柱、圓錐、棱臺(tái)、圓臺(tái)、球的結(jié)構(gòu)特征。

      (4)會(huì)表示有關(guān)于幾何體以及柱、錐、臺(tái)的分類。

      2、過(guò)程與方法

      (1)讓學(xué)生通過(guò)直觀感受空間物體,從實(shí)物中概括出柱、錐、臺(tái)、球的幾何結(jié)構(gòu)特征。

      (2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識(shí)。

      3、情感態(tài)度與價(jià)值觀

      (1)使學(xué)生感受空間幾何體存在于現(xiàn)實(shí)生活周?chē)鰪?qiáng)學(xué)生學(xué)習(xí)的積極性,同時(shí)提高學(xué)生的觀察能力。

      (2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。

      二、教學(xué)重點(diǎn)、難點(diǎn)

      重點(diǎn):讓學(xué)生感受大量空間實(shí)物及模型、概括出柱、錐、臺(tái)、球的結(jié)構(gòu)特征。 難點(diǎn):柱、錐、臺(tái)、球的結(jié)構(gòu)特征的概括。

      三、教學(xué)用具

      (1)學(xué)法:觀察、思考、交流、討論、概括。

      (2)實(shí)物模型、投影儀 四、教學(xué)思路

      (一)創(chuàng)設(shè)情景,揭示課題

      1、教師提出問(wèn)題:在我們生活周?chē)杏胁簧儆刑厣慕ㄖ铮隳芘e出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對(duì)學(xué)生的活動(dòng)及時(shí)給予評(píng)價(jià)。

      2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺(tái)、球結(jié)構(gòu)特征的空間物體),你能通過(guò)觀察。根據(jù)某種標(biāo)準(zhǔn)對(duì)這些空間物體進(jìn)行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。

      (二)、研探新知

      1、引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對(duì)物體進(jìn)行分類,分辯棱柱、圓柱、棱錐。

      2、觀察棱柱的幾何物件以及投影出棱柱的圖片,它們各自的特點(diǎn)是什么?它們的共同特點(diǎn)是什么?

      3、組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。

      (1)有兩個(gè)面互相平行;

      (2)其余各面都是平行四邊形;

      (3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

      4、教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。

      5、提出問(wèn)題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對(duì)棱柱分類?

      請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

      6、以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺(tái)的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。

      7、讓學(xué)生觀察圓柱,并實(shí)物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。

      8、引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺(tái)、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實(shí)物模型演示引導(dǎo)學(xué)生思考、討論、概括。

      9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺(tái)與圓臺(tái)統(tǒng)稱為臺(tái)體,圓錐與棱錐統(tǒng)稱為錐體。

      10、現(xiàn)實(shí)世界中,我們看到的物體大多由具有柱、錐、臺(tái)、球等幾何結(jié)構(gòu)特征的物體組合而成。請(qǐng)列舉身邊具有已學(xué)過(guò)的幾何結(jié)構(gòu)特征的物體,并說(shuō)出組成這些物體的幾何結(jié)構(gòu)特征?它們由哪些基本幾何體組成的?

      (三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問(wèn)題,讓學(xué)生思考。

      1、有兩個(gè)面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說(shuō)明,如圖)

      2、棱柱的何兩個(gè)平面都可以作為棱柱的底面嗎?

      3、課本P8,習(xí)題1.1 A組第1題。

      4、圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺(tái)可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?

      5、棱臺(tái)與棱柱、棱錐有什么關(guān)系?圓臺(tái)與圓柱、圓錐呢?

      四、鞏固深化

      練習(xí):課本P7 練習(xí)1、2(1)(2)  課本P8 習(xí)題1.1 第2、3、4題 五、歸納整理

      由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容 六、布置作業(yè)

      課本P8 練習(xí)題1.1 B組第1題

      課外練習(xí) 課本P8 習(xí)題1.1 B組第2題

      職高高一數(shù)學(xué)教案 篇12

      一、教學(xué)目標(biāo)

      1、理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系。

      2、能根據(jù)所給條件寫(xiě)出簡(jiǎn)單的一次函數(shù)表達(dá)式。

      二、能力目標(biāo)

      1、經(jīng)歷一般規(guī)律的探索過(guò)程、發(fā)展學(xué)生的抽象思維能力。

      2、通過(guò)由已知信息寫(xiě)一次函數(shù)表達(dá)式的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

      三、情感目標(biāo)

      1、通過(guò)函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。

      2、經(jīng)歷利用一次函數(shù)解決實(shí)際問(wèn)題的過(guò)程,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

      四、教學(xué)重難點(diǎn)

      1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

      2、會(huì)根據(jù)已知信息寫(xiě)出一次函數(shù)的表達(dá)式。

      五、教學(xué)過(guò)程

      1、新課導(dǎo)入

      有關(guān)函數(shù)問(wèn)題在我們?nèi)粘I钪须S處可見(jiàn),如彈簧秤有自然長(zhǎng)度,在彈性限度內(nèi),隨著所掛物體的重量的'增加,彈簧的長(zhǎng)度相應(yīng)的會(huì)拉長(zhǎng),那么所掛物體的重量與彈簧的長(zhǎng)度之間就存在某種關(guān)系,究竟是什么樣的關(guān)系,

      請(qǐng)看:某彈簧的自然長(zhǎng)度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長(zhǎng)度y增加0.5厘米。

      (1)計(jì)算所掛物體的質(zhì)量分別為1千克、 2千克、 3千克、 4千克、 5千克時(shí)彈簧的長(zhǎng)度,

      (2)你能寫(xiě)出x與y之間的關(guān)系式嗎?

      分析:當(dāng)不掛物體時(shí),彈簧長(zhǎng)度為3厘米,當(dāng)掛1千克物體時(shí),增加0.5厘米,總長(zhǎng)度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時(shí),彈簧又增加0.5厘米,總共增加1厘米,由此可見(jiàn),所掛物體每增加1千克,彈簧就伸長(zhǎng)0.5厘米,所掛物體為x千克,彈簧就伸長(zhǎng)0.5x厘米,則彈簧總長(zhǎng)為原長(zhǎng)加伸長(zhǎng)的長(zhǎng)度,即y=3+0.5x。

      2、做一做

      某輛汽車(chē)油箱中原有汽油 100升,汽車(chē)每行駛 50千克耗油 9升。你能寫(xiě)出x與y之間的關(guān)系嗎?(y=1000。18x或y=100 x)

      接著看下面這些函數(shù),你能說(shuō)出這些函數(shù)有什么共同的特點(diǎn)嗎?上面的幾個(gè)函數(shù)關(guān)系式,都是左邊是因變量,右邊是含自變量的代數(shù)式,并且自變量和因變量的指數(shù)都是一次。

      3、一次函數(shù),正比例函數(shù)的概念

      若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

      4、例題講解

      例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

      ①y=x6;②y= ;③y= ;④y=7x

      A、①②③ B、①③④ C、①②③④ D、②③④

      分析:這道題考查的是一次函數(shù)的概念,特別要強(qiáng)調(diào)一次函數(shù)自變量與因變量的指數(shù)都是1,因而②不是一次函數(shù),答案為B

      職高高一數(shù)學(xué)教案 篇13

      一、學(xué)習(xí)目標(biāo):

      知識(shí)與技能:理解直線與平面、平面與平面平行的性質(zhì)定理的含義, 并會(huì)應(yīng)用性質(zhì)解決問(wèn)題

      過(guò)程與方法:能應(yīng)用文字語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言準(zhǔn)確地描述直線與平面、平面與平面的性質(zhì)定理

      情感態(tài)度與價(jià)值觀:通過(guò)自主學(xué)習(xí)、主動(dòng)參與、積極探究的學(xué)習(xí)過(guò)程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信心和積極性,培養(yǎng)學(xué)生良好的思維習(xí)慣,滲透化歸與轉(zhuǎn)化的數(shù)學(xué)思想,體會(huì)事物之間相互轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義思想方法

      二、學(xué)習(xí)重、難點(diǎn)

      學(xué)習(xí)重點(diǎn): 直線與平面、平面與平面平行的性質(zhì)及其應(yīng)用

      學(xué)習(xí)難點(diǎn): 將空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題的方法,

      三、學(xué)法指導(dǎo)及要求:

      1、限定45分鐘完成,注意逐字逐句仔細(xì)審題,認(rèn)真思考、獨(dú)立規(guī)范作答,不會(huì)的先繞過(guò),做好記號(hào)。

      2、把學(xué)案中自己易忘、易出錯(cuò)的知識(shí)點(diǎn)和疑難問(wèn)題以及解題方法規(guī)律,及時(shí)整理在解題本,多復(fù)習(xí)記憶。3、A:自主學(xué)習(xí);B:合作探究;C:能力提升4、小班、重點(diǎn)班完成全部,平行班完成A.B類題

      四、知識(shí)鏈接:

      1.空間直線與直線的位置關(guān)系

      2.直線與平面的位置關(guān)系

      3.平面與平面的位置關(guān)系

      4.直線與平面平行的判定定理的符號(hào)表示

      5.平面與平面平行的判定定理的符號(hào)表示

      五、學(xué)習(xí)過(guò)程:

      A問(wèn)題1:

      1)如果一條直線與一個(gè)平面平行,那么這條直線與這個(gè)平面內(nèi)的直線有哪些位置關(guān)系?

      (觀察長(zhǎng)方體)

      2)如果一條直線和一個(gè)平面平行,如何在這個(gè)平面內(nèi)做一條直線與已知直線平行?

      (可觀察教室內(nèi)燈管和地面)

      A問(wèn)題2: 一條直線與平面平行,這條直線和這個(gè)平面內(nèi)直線的位置關(guān)系有幾種可能?

      A問(wèn)題3:如果一條直線 與平面平行,在什么條件下直線 與平面內(nèi)的直線平行呢?

      由于直線 與平面內(nèi)的任何直線無(wú)公共點(diǎn),所以過(guò)直線 的某一平面,若與平面相交,則直線 就平行于這條交線

      B自主探究1:已知: ∥, ,=b。求證: ∥b。

      直線與平面平行的性質(zhì)定理:一條直線與一個(gè)平面平行,則過(guò)這條直線的任一平面與此平面的交線與該直線平行

      符號(hào)語(yǔ)言:

      線面平行性質(zhì)定理作用:證明兩直線平行

      思想:線面平行 線線平行

      例1:有一塊木料如圖,已知棱BC平行于面AC(1)要經(jīng)過(guò)木料表面ABCD 內(nèi)的一點(diǎn)P和棱BC將木料鋸開(kāi),應(yīng)怎樣畫(huà)線?(2)所畫(huà)的線和面AC有什么關(guān)系?

      例2:已知平面外的兩條平行直線中的一條平行于這個(gè)平面,求證:另一條也平行于這個(gè)平面。

      問(wèn)題5:兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線與另一平面有什么樣的關(guān)系?兩個(gè)平面平行,那么其中一個(gè)平面內(nèi)的直線與另一平面內(nèi)的直線有何關(guān)系?

      自主探究2:如圖,平面,滿足∥,=a,=b,求證:a∥b

      平面與平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行

      符號(hào)語(yǔ)言:

      面面平行性質(zhì)定理作用:證明兩直線平行

      思想:面面平行 線線平行

      例3 求證:夾在兩個(gè)平行平面間的平行線段相等

      六、達(dá)標(biāo)檢測(cè):

      A1.61頁(yè)練習(xí)

      A2.下列判斷正確的是( )

      A. ∥, ,則 ∥b B. =P,b ,則 與b不平行

      C. ,則a∥ D. ∥,b∥,則 ∥b

      B3.直線 ∥平面,P,過(guò)點(diǎn)P平行于 的直線( )

      A.只有一條,不在平面內(nèi) B.有無(wú)數(shù)條,不一定在內(nèi)

      C.只有一條,且在平面內(nèi) D.有無(wú)數(shù)條,一定在內(nèi)

      B4.下列命題錯(cuò)誤的是 ( )

      A. 平行于同一條直線的兩個(gè)平面平行或相交

      B. 平行于同一個(gè)平面的兩個(gè)平面平行

      C. 平行于同一條直線的兩條直線平行

      D. 平行于同一個(gè)平面的兩條直線平行或相交

      B5. 平行四邊形EFGH的四個(gè)頂點(diǎn)E、F、G、H、分別在空間四邊形ABCD的四條邊AB、BC、CD、AD、上,又EF∥BD,則 ( )

      A. EH∥BD,BD不平行與FG

      B. FG∥BD,EH不平行于BD

      C. EH∥BD,F(xiàn)G∥BD

      D. 以上都不對(duì)

      B6.若直線 ∥b, ∥平面,則直線b與平面的位置關(guān)系是

      B7一個(gè)平面上有兩點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面

      七、小結(jié)與反思:

      職高高一數(shù)學(xué)教案 篇14

      教學(xué)目標(biāo):

      使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系.

      教學(xué)重點(diǎn):

      函數(shù)的概念,函數(shù)定義域的求法.

      教學(xué)難點(diǎn):

      函數(shù)概念的理解.

      教學(xué)過(guò)程:

      Ⅰ.課題導(dǎo)入

      [師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?

      (幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).

      設(shè)在一個(gè)變化的過(guò)程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說(shuō)y是x的函數(shù),x叫做自變量.

      [師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問(wèn)題:

      問(wèn)題一:y=1(xR)是函數(shù)嗎?

      問(wèn)題二:y=x與y=x2x 是同一個(gè)函數(shù)嗎?

      (學(xué)生思考,很難回答)

      [師]顯然,僅用上述函數(shù)概念很難回答這些問(wèn)題,因此,需要從新的高度來(lái)認(rèn)識(shí)函數(shù)概念(板書(shū)課題).

      Ⅱ.講授新課

      [師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.

      在(1)中,對(duì)應(yīng)關(guān)系是乘2,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).

      在(2)中,對(duì)應(yīng)關(guān)系是求平方,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).

      在(3)中,對(duì)應(yīng)關(guān)系是求倒數(shù),即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù) 1x 和它對(duì)應(yīng).

      請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?

      [生]一對(duì)一、二對(duì)一、一對(duì)一.

      [師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?

      [生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).

      [師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的關(guān)系對(duì)應(yīng)的,這是不能忽略的. 實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.

      現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書(shū))

      設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰AB為從集合A到集合B的一個(gè)函數(shù).

      記作:y=f(x),xA

      其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.

      一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a0)和它對(duì)應(yīng).

      反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)= kx (k0)和它對(duì)應(yīng).

      二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當(dāng)a0時(shí)B={f(x)|f(x)4ac-b24a };當(dāng)a0時(shí),B={f(x)|f(x)4ac-b24a },它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對(duì)應(yīng).

      函數(shù)概念用集合、對(duì)應(yīng)的語(yǔ)言敘述后,我們就很容易回答前面所提出的兩個(gè)問(wèn)題.

      y=1(xR)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對(duì)應(yīng),所以說(shuō)y是x的函數(shù).

      Y=x與y=x2x 不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個(gè)函數(shù).

      [師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?

      (教師提出問(wèn)題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))

      注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).

      ②符號(hào)f:AB表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.

      ③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.

      ④f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.

      ⑤f(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.

      [師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號(hào)來(lái)表示

      Ⅲ.例題分析

      [例1]求下列函數(shù)的定義域.

      (1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

      分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.

      解:(1)x-20,即x2時(shí),1x-2 有意義

      這個(gè)函數(shù)的定義域是{x|x2}

      (2)3x+20,即x-23 時(shí)3x+2 有意義

      函數(shù)y=3x+2 的定義域是[-23 ,+)

      (3) x+10 x2

      這個(gè)函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).

      注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.

      從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:

      (1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;

      (2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;

      (3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的實(shí)數(shù)的集合;

      (4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的集合(即使每個(gè)部分有意義的實(shí)數(shù)的集合的交集);

      (5)如果f(x)是由實(shí)際問(wèn)題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.

      例如:一矩形的寬為x m,長(zhǎng)是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤0而不是全體實(shí)數(shù).

      由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問(wèn)題的實(shí)際意義決定.

      [師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來(lái)表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+32+1=11

      注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.

      下面我們來(lái)看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?

      [生甲]求函數(shù)式的值,嚴(yán)格地說(shuō)是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.

      [師]回答正確,不過(guò)要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬(wàn)萬(wàn)不可粗心大意噢!

      [生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.

      [師]生乙的回答完整嗎?

      [生]完整!(課本上就是如生乙所述那樣寫(xiě)的).

      [師]大家說(shuō),判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?

      [生]函數(shù)的定義.

      [師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?

      (學(xué)生竊竊私語(yǔ):是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)

      (無(wú)人回答)

      [師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問(wèn)題都要多問(wèn)幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!

      (生恍然大悟,我們?cè)趺淳蜎](méi)想到呢?)

      [例2]求下列函數(shù)的值域

      (1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

      (3)y=x2+4x+3 (-31)

      分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.

      對(duì)于(1)(2)可用直接法根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.

      對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.

      解:(1)yR

      (2)y{1,0,-1}

      (3)畫(huà)出y=x2+4x+3(-31)的圖象,如圖所示,

      當(dāng)x[-3,1]時(shí),得y[-1,8]

      Ⅳ.課堂練習(xí)

      課本P24練習(xí)17.

      Ⅴ.課時(shí)小結(jié)

      本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問(wèn)題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來(lái)歸納)

      Ⅵ.課后作業(yè)

      課本P28,習(xí)題1、2. 文 章來(lái)

      職高高一數(shù)學(xué)教案 篇15

      教學(xué)目標(biāo)

      (1)正確理解充分條件、必要條件和充要條件的概念;

      (2)能正確判斷是充分條件、必要條件還是充要條件;

      (3)培養(yǎng)學(xué)生的邏輯思維能力及歸納總結(jié)能力;

      (4)在充要條件的教學(xué)中,培養(yǎng)等價(jià)轉(zhuǎn)化思想.

      教學(xué)重點(diǎn)難點(diǎn):

      關(guān)于充要條件的判斷

      教學(xué)用具:

      幻燈機(jī)或?qū)嵨锿队皟x

      教學(xué)過(guò)程設(shè)計(jì)

      1.復(fù)習(xí)引入

      練習(xí):判斷下列命題是真命題還是假命題(用幻燈投影):

      (1)若,則;

      (2)若,則;

      (3)全等三角形的面積相等;

      (4)對(duì)角線互相垂直的四邊形是菱形;

      (5)若,則;

      (6)若方程有兩個(gè)不等的實(shí)數(shù)解,則.

      (學(xué)生口答,教師板書(shū).)

      (1)、(3)、(6)是真命題,(2)、(4)、(5)是假命題.

      置疑:對(duì)于命題“若,則”,有時(shí)是真命題,有時(shí)是假命題.如何判斷其真假的?

      答:看能不能推出,如果能推出,則原命題是真命題,否則就是假命題.

      對(duì)于命題“若,則”,如果由經(jīng)過(guò)推理能推出,也就是說(shuō),如果成立,那么一定成立.換句話說(shuō),只要有條件就能充分地保證結(jié)論的成立,這時(shí)我們稱條件是成立的充分條件,記作.

      2.講授新課

      (板書(shū)充分條件的定義.)

      一般地,如果已知,那么我們就說(shuō)是成立的充分條件.

      提問(wèn):請(qǐng)用充分條件來(lái)敘述上述(1)、(3)、(6)的條件與結(jié)論之間的關(guān)系.

      (學(xué)生口答)

      (1)“,”是“”成立的充分條件;

      (2)“三角形全等”是“三角形面積相等”成立的充分條件;

      (3)“方程的有兩個(gè)不等的實(shí)數(shù)解”是“”成立的充分條件.

      從另一個(gè)角度看,如果成立,那么其逆否命題也成立,即如果沒(méi)有,也就沒(méi)有,亦即是成立的必須要有的條件,也就是必要條件.

      (板書(shū)必要條件的定義.)

      提出問(wèn)題:用“充分條件”和“必要條件”來(lái)敘述上述6個(gè)命題.

      (學(xué)生口答).

      (1)因?yàn)椋允堑某浞謼l件,是的必要條件;

      (2)因?yàn)椋允堑谋匾獥l件,是的充分條件;

      (3)因?yàn)椤皟扇切稳取薄皟扇切蚊娣e相等”,所以“兩三角形全等”是“兩三角形面積相等”的充分條件,“兩三角形面積相等”是“兩三角形全等”的必要條件;

      (4)因?yàn)椤八倪呅蔚膶?duì)角線互相垂直”“四邊形是菱形”,所以“四邊形的對(duì)角線互相垂直”是“四邊形是菱形”的必要條件,“四邊形是菱形”是“四邊形的對(duì)角線互相垂直”的充分條件;

      (5)因?yàn)椋允堑谋匾獥l件,是的充分條件;

      (6)因?yàn)椤胺匠痰挠袃蓚(gè)不等的實(shí)根”“”,而且“方程的有兩個(gè)不等的實(shí)根”“”,所以“方程的有兩個(gè)不等的實(shí)根”是“”充分條件,而且是必要條件.

      總結(jié):如果是的充分條件,又是的必要條件,則稱是的充分必要條件,簡(jiǎn)稱充要條件,記作.

      (板書(shū)充要條件的定義.)

      3.鞏固新課

      例1(用投影儀投影.)

      (學(xué)生活動(dòng),教師引導(dǎo)學(xué)生作出下面回答.)

      ①因?yàn)橛欣頂?shù)一定是實(shí)數(shù),但實(shí)數(shù)不一定是有理數(shù),所以是的充分非必要條件,是的必要非充分條件;

      ②一定能推出,而不一定推出,所以是的充分非必要條件,是的必要非充分條件;

      ③、是奇數(shù),那么一定是偶數(shù);是偶數(shù),、不一定都是奇數(shù)(可能都為偶數(shù)),所以是的充分非必要條件,是的必要非充分條件;

      ④表示或,所以是成立的必要非充分條件;

      ⑤由交集的定義可知且是成立的充要條件;

      ⑥由知且,所以是成立的充分非必要條件;

      ⑦由知或,所以是,成立的必要非充分條件;

      ⑧易知“是4的倍數(shù)”是“是6的倍數(shù)”成立的既非充分又非必要條件;

      (通過(guò)對(duì)上述問(wèn)題的交流、思辯,在爭(zhēng)論中得到了正確答案,并加深了對(duì)充分條件、必要條件的認(rèn)識(shí).)

      例2已知是的充要條件,是的必要條件同時(shí)又是的充分條件,試與的關(guān)系.(投影)

      解:由已知得,

      所以是的充分條件,或是的必要條件.

      4.小結(jié)回授

      今天我們學(xué)習(xí)了充分條件、必要條件和充要條件的概念,并學(xué)會(huì)了判斷條件A是B的什么條件,這為我們今后解決數(shù)學(xué)問(wèn)題打下了等價(jià)轉(zhuǎn)化的基礎(chǔ).

      課內(nèi)練習(xí):課本(人教版,試驗(yàn)修訂本,第一冊(cè)(上))第35頁(yè)練習(xí)1、2;第36頁(yè)練習(xí)1、2.

      (通過(guò)練習(xí),檢查學(xué)生掌握情況,有針對(duì)性的進(jìn)行講評(píng).)

      5.課外作業(yè):教材第36頁(yè) 習(xí)題1.8 1、2、3.

      職高高一數(shù)學(xué)教案 篇16

      一、 教學(xué)目標(biāo)

      1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負(fù)符號(hào)判斷);了解任意角的余切、正割、余割函數(shù)的定義.

      2.經(jīng)歷從銳角三角函數(shù)定義過(guò)度到任意角三角函數(shù)定義的推廣過(guò)程,體驗(yàn)三角函數(shù)概念的產(chǎn)生、發(fā)展過(guò)程. 領(lǐng)悟直角坐標(biāo)系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗(yàn).

      3.培養(yǎng)學(xué)生通過(guò)現(xiàn)象看本質(zhì)的唯物主義認(rèn)識(shí)論觀點(diǎn),滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.

      4.培養(yǎng)學(xué)生求真務(wù)實(shí)、實(shí)事求是的科學(xué)態(tài)度.

      二、 重點(diǎn)、難點(diǎn)、關(guān)鍵

      重點(diǎn):任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負(fù))符號(hào)判斷法.

      難點(diǎn):把三角函數(shù)理解為以實(shí)數(shù)為自變量的函數(shù).

      關(guān)鍵:如何想到建立直角坐標(biāo)系;六個(gè)比值的確定性( α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

      三、 教學(xué)理念和方法

      教學(xué)中注意用新課程理念處理傳統(tǒng)教材,學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不僅要接受、記憶、模仿和練習(xí),而且要自主探索、動(dòng)手實(shí)踐、合作交流、閱讀自學(xué),師生互動(dòng),教師發(fā)揮組織者、引導(dǎo)者、合作者的作用,引導(dǎo)學(xué)生主體參與、揭示本質(zhì)、經(jīng)歷過(guò)程.

      根據(jù)本節(jié)課內(nèi)容、高一學(xué)生認(rèn)知特點(diǎn)和我自己的教學(xué)風(fēng)格,本節(jié)課采用“啟發(fā)探索、講練結(jié)合”的方法組織教學(xué).

      四、 教學(xué)過(guò)程

      [執(zhí)教線索:

      回想再認(rèn):函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關(guān)系)——問(wèn)題情境:能推廣到任意角嗎?——它山之石:建立直角坐標(biāo)系(為何?)——優(yōu)化認(rèn)知:用直角坐標(biāo)系研究銳角三角函數(shù)——探索發(fā)展:對(duì)任意角研究六個(gè)比值(與角之間的關(guān)系:確定性、依賴性,滿足函數(shù)定義嗎?)——自主定義:任意角三角函數(shù)定義——登高望遠(yuǎn):三角函數(shù)的要素分析(對(duì)應(yīng)法則、定義域、值域與正負(fù)符號(hào)判定)——例題與練習(xí)、回顧小結(jié)——布置作業(yè)]

      (一)復(fù)習(xí)引入、回想再認(rèn)

      開(kāi)門(mén)見(jiàn)山,面對(duì)全體學(xué)生提問(wèn):

      在初中我們初步學(xué)習(xí)了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學(xué)習(xí)了角度制和弧度制,這節(jié)課該研究什么呢?

      探索任意角的三角函數(shù)(板書(shū)課題),請(qǐng)同學(xué)們回想,再明確一下:

      (情景1)什么叫函數(shù)?或者說(shuō)函數(shù)是怎樣定義的?

      讓學(xué)生回想后再點(diǎn)名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進(jìn)行修正、強(qiáng)調(diào):

      傳統(tǒng)定義:設(shè)在一個(gè)變化過(guò)程中有兩個(gè)變量x與,如果對(duì)于x的每一個(gè)值,都有唯一確定的值和它對(duì)應(yīng),那么就說(shuō)是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.

      現(xiàn)代定義:設(shè)A、B是非空的數(shù)集,如果按某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù),在集合B中都有唯一確定的數(shù) f(x)和它對(duì)應(yīng),那么就稱映射?:A→B為從集合A到集合B的一個(gè)函數(shù),記作:= f(x),x∈A ,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.

    【職高高一數(shù)學(xué)教案】相關(guān)文章:

    職高數(shù)學(xué)教案高二范文09-28

    職高高一學(xué)生期末評(píng)語(yǔ)01-08

    職高一語(yǔ)文教案范文10-14

    職高一數(shù)學(xué)教學(xué)計(jì)劃10-21

    高一數(shù)學(xué)教案06-20

    高一數(shù)學(xué)教案07-20

    職高高一數(shù)學(xué)課件設(shè)計(jì)02-21

    中職高一數(shù)學(xué)教學(xué)計(jì)劃02-25

    中職高一數(shù)學(xué)教學(xué)計(jì)劃10-21

    亚洲精品无码AV人在线观看国产| 一级中文字幕免费乱码专区| 青春草无码精品视频在线观看| 大地影院mv在线观看高清| 无码精品久久久久久人妻中字| 极品人妻videosss人妻| 人妻熟妇视频一区二区不卡| 色欧美在线视频| 最好看的中文视频最好的中文| 一级特黄大片欧美久久久久|