有理數(shù)的乘法教案15篇
作為一名老師,就不得不需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。那么寫教案需要注意哪些問(wèn)題呢?下面是小編精心整理的有理數(shù)的乘法教案,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
有理數(shù)的乘法教案1
教學(xué)目的:
1.知識(shí)與技能
體會(huì)有理數(shù)乘法的實(shí)際意義;
掌握有理數(shù)乘法的運(yùn)算法則和乘法法則,靈活地運(yùn)用運(yùn)算律簡(jiǎn)化運(yùn)算。
2.過(guò)程與方法
經(jīng)歷有理數(shù)乘法的推導(dǎo)過(guò)程,用分類討論的思想歸納出兩數(shù)相乘的法則,感悟中、小學(xué)數(shù)學(xué)中的乘法運(yùn)算的重要區(qū)別。
通過(guò)體驗(yàn)有理數(shù)的乘法運(yùn)算,感悟和歸納出進(jìn)行乘法運(yùn)算的一般步驟。
3.情感、態(tài)度與價(jià)值觀
通過(guò)類比和分類的思想歸納乘法法則,發(fā)展舉一反三的能力。
教學(xué)重點(diǎn):
應(yīng)用法則正確地進(jìn)行有理數(shù)乘法運(yùn)算。
教學(xué)難點(diǎn):
兩負(fù)數(shù)相乘,積的符號(hào)為正。
教具準(zhǔn)備:
多媒體。
教學(xué)過(guò)程:
一、引入
前面我們已經(jīng)學(xué)習(xí)了有理數(shù)的加法運(yùn)算和減法運(yùn)算,今天,我們開始研究有理數(shù)的乘法運(yùn)算.
問(wèn)題一:有理數(shù)包括哪些數(shù)?
回答:有理數(shù)包括正整數(shù)、正分?jǐn)?shù)、負(fù)整數(shù)、負(fù)分?jǐn)?shù)和零.
問(wèn)題二:小學(xué)已經(jīng)學(xué)過(guò)的乘法運(yùn)算,屬于有理數(shù)中哪些數(shù)的運(yùn)算?
回答:屬于正有理數(shù)和零的乘法運(yùn)算.或答:屬于正整數(shù)、正分?jǐn)?shù)和零的乘法運(yùn)算.
計(jì)算下列各題;
以上這些題,都是對(duì)正有理數(shù)與正有理數(shù)、正有理數(shù)與零、零與零的乘法,方法與小學(xué)學(xué)過(guò)的相同,今天我們要研究的有理數(shù)的乘法運(yùn)算,重點(diǎn)就是要解決引入負(fù)有理數(shù)之后,怎樣進(jìn)行乘法運(yùn)算的問(wèn)題.
二、新課
我們以蝸牛爬行距離為例,為區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正,為區(qū)分時(shí)間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正。
如圖,一只蝸牛沿直線l爬行,它現(xiàn)在的位置恰在l上的點(diǎn)O。
1.正數(shù)與正數(shù)相乘
問(wèn)題一:如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
講解:3分后蝸牛應(yīng)在l上點(diǎn)O右邊6cm處,這可表示為
(+2)×(+3)=+6
答:結(jié)果向東運(yùn)動(dòng)了6米.
2.負(fù)數(shù)與正數(shù)相乘
問(wèn)題二:如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
講解:3分后蝸牛應(yīng)在l上點(diǎn)O右邊6cm處,這可表示為
(-2)×(+3)=(-6)
3.正數(shù)與負(fù)數(shù)相乘
問(wèn)題三:如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
講解:3分后蝸牛應(yīng)為l上點(diǎn)O左邊6cm處,這可以表示為
(+2)×(-3)=-6
4.負(fù)數(shù)與負(fù)數(shù)相乘
問(wèn)題四:如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
講解:3分前蝸牛應(yīng)為l上點(diǎn)O右邊6cm處,這可以表示為
(-2)×(-3)=+6
5.零與任何數(shù)相乘或任何數(shù)與零相乘
問(wèn)題五:原地不動(dòng)或運(yùn)動(dòng)了零次,結(jié)果是什么?
答:結(jié)果都是仍在原處,即結(jié)果都是零,若用式子表達(dá):
0×3=0;0×(-3)=0;2×0=0;(-2)×0=0.
綜合上述五個(gè)問(wèn)題得出:
(1)(+2)×(+3)=+6;
(2)(-2)×(+3)=-6;
(3)(+2)×(-3)=-6;
(4)(-2)×(-3)=+6.
(5)任何數(shù)與零相乘都得零.
觀察上述(1)~(4)回答:
1.積的符號(hào)與因數(shù)的符號(hào)有什么關(guān)系?
2.積的絕對(duì)值與因數(shù)的絕對(duì)值有什么關(guān)系?
答:1.若兩個(gè)因數(shù)的符號(hào)相同,則積的符號(hào)為正;若兩個(gè)因數(shù)的符號(hào)相反,則積的符號(hào)為負(fù).2.積的絕對(duì)值等于兩個(gè)因數(shù)的絕對(duì)值的積.
由此我們可以得到:
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘.
(1)~(5)包括了兩個(gè)有理數(shù)相乘的所有情況,綜合上述各種情況,得到有理數(shù)乘法的法則:
口答:確定下列兩數(shù)積的符號(hào):
例題:計(jì)算下列各題:
解題步驟:
1.認(rèn)清題目類型.
2.根據(jù)法則確定積的符號(hào).
3.絕對(duì)值相乘.
練習(xí):
1.口答下列各題:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9;(4)(-6)×1;
(5)(-6)×(-1);(6)6×(-1);
(7)(-6)×0;(8)0×(-6);
(9)(-6)×0.25;(10)(-0.5)×(-8);
注意:由(4)(5)(6)得:一個(gè)數(shù)與1相乘得原數(shù),一個(gè)數(shù)與-1相乘,得原數(shù)的相反數(shù).
2.在表中的各個(gè)小方格里,填寫所在的橫行的第一個(gè)數(shù)與所在直列的第一個(gè)數(shù)的積:
3.計(jì)算下列各題:
(1)(-36)×(-15);(2)-48×1.25;
4.填空:
(1)1×(-5)=____;(-1)×(-5)=____;
+(-5)=____;-(-5)=____;
(2)1×a=____;(-1)×a=____;
(3)1×|-5|=____;-1×|-5|=____;
-|-5|=____
(4)1+(-5)=____;(-1)+(-5)=____;
(-1)+5=____.
三、小結(jié)
(1)指導(dǎo)學(xué)生看書,精讀乘法法則.
(2)強(qiáng)調(diào)運(yùn)用法則進(jìn)行有理數(shù)乘法的步驟.
(3)比較有理數(shù)乘法的符號(hào)法則與有理數(shù)加法的符號(hào)法則的區(qū)別,以達(dá)到進(jìn)一步鞏固有理數(shù)乘法法則的目的.
四、作業(yè)
1.計(jì)算:
(1)(-16)×15;(2)(-9)×(-14);
(3)(-36)×(-1);(4)13×(-11);
(5)(-25)×16;(6)(-10)×(-16).
2.計(jì)算:
(1)2.9×(-0.4);(2)-30.5×0.2;
(3)0.72×(-1.25);(4)100×(-0.001);
(5)-4.8×(-1.25);(6)-4.5×(-0.32).
3.計(jì)算:
4.填空:(用“>”或“<”號(hào)連接)
(1)如果a<0,b>0,那么,ab____0;
(2)如果a<0,b<0,那么,ab____0;
(3)當(dāng)a>0時(shí),a____2a;
(4)當(dāng)a<0時(shí),a____2a.
板書設(shè)計(jì)
1.4有理數(shù)的乘法
法則:練習(xí)
教學(xué)設(shè)計(jì)思路
本節(jié)課是在小學(xué)已接觸到的乘法、初中剛學(xué)習(xí)過(guò)的有理數(shù)的加減法基礎(chǔ)上進(jìn)行的。通過(guò)對(duì)實(shí)際問(wèn)題的解決,引入有理數(shù)的乘法法則。在講解運(yùn)動(dòng)的例子時(shí)運(yùn)用現(xiàn)代化教學(xué)手段,把圖形中的“靜”變“動(dòng)”,增強(qiáng)了直觀性,初步培養(yǎng)想象能力。
教學(xué)反思
強(qiáng)調(diào)學(xué)生與教師一起共同參與教學(xué)活動(dòng),我們堅(jiān)持把教學(xué)活動(dòng)過(guò)程體現(xiàn)在教學(xué)中,又激發(fā)學(xué)生的思維積極性,讓學(xué)生學(xué)會(huì)分析問(wèn)題和解決問(wèn)題。
有理數(shù)的乘法教案2
三維目標(biāo)
一、知識(shí)與技能
(1)能確定多個(gè)因數(shù)相乘時(shí),積的符號(hào),并能用法則進(jìn)行多個(gè)因數(shù)的乘積運(yùn)算。
(2)能利用計(jì)算器進(jìn)行有理數(shù)的乘法運(yùn)算。
二、過(guò)程與方法
經(jīng)歷探索幾個(gè)不為0的數(shù)相乘,積的符號(hào)問(wèn)題的過(guò)程,發(fā)展觀察、歸納驗(yàn)證等能力。
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生主動(dòng)探索,積極思考的學(xué)習(xí)興趣。
教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):能用法則進(jìn)行多個(gè)因數(shù)的乘積運(yùn)算。
2.難點(diǎn):積的符號(hào)的確定。
3.關(guān)鍵:讓學(xué)生觀察實(shí)例,發(fā)現(xiàn)規(guī)律。
教具準(zhǔn)備
投影儀。
四、 教學(xué)過(guò)程
1.請(qǐng)敘述有理數(shù)的乘法法則。
2.計(jì)算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。
五、新授
1.多個(gè)有理數(shù)相乘,可以把它們按順序依次相乘。
例如:計(jì)算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52.
我們知道計(jì)算有理數(shù)的乘法,關(guān)鍵是確定積的符號(hào)。
觀察:下列各式的積是正的還是負(fù)的?
(1)234 (2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式積為負(fù),(2)、(4)式積為正,積的符號(hào)與負(fù)因數(shù)的個(gè)數(shù)有關(guān)。
教師問(wèn):幾個(gè)不是0的數(shù)相乘,積的符號(hào)與負(fù)因數(shù)的個(gè)數(shù)之間有什么關(guān)系?
學(xué)生完成思考后,教師指出:幾個(gè)不是0的數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,與正因數(shù)的個(gè)數(shù)無(wú)關(guān),當(dāng)負(fù)因數(shù)的個(gè)數(shù)為負(fù)數(shù)時(shí),積為負(fù)數(shù);當(dāng)負(fù)因數(shù)的個(gè)數(shù)為偶數(shù)時(shí),積為正數(shù)。
2.多個(gè)不是0的有理數(shù)相乘,先由負(fù)因數(shù)的個(gè)數(shù)確定積的符號(hào)再求各個(gè)絕對(duì)值的積。
有理數(shù)的乘法教案3
教學(xué)目標(biāo)
1。理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號(hào)法則和絕對(duì)值運(yùn)算法則,并初步理解有理數(shù)乘法法則的合理性;
2。能根據(jù)有理數(shù)乘法法則熟練地進(jìn)行有理數(shù)乘法運(yùn)算,使學(xué)生掌握多個(gè)有理數(shù)相乘的積的符號(hào)法則;
3。三個(gè)或三個(gè)以上不等于0的有理數(shù)相乘時(shí),能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡(jiǎn)化運(yùn)算過(guò)程;
4。通過(guò)有理數(shù)乘法法則及運(yùn)算律在乘法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;
5。本節(jié)課通過(guò)行程問(wèn)題說(shuō)明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識(shí)來(lái)源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點(diǎn)、難點(diǎn)分析
重點(diǎn):
是否能夠熟練進(jìn)行有理數(shù)的乘法運(yùn)算。依據(jù)有理數(shù)的乘法法則和運(yùn)算律靈活進(jìn)行有理數(shù)乘法運(yùn)算是進(jìn)一步學(xué)習(xí)除法運(yùn)算和乘方運(yùn)算的基礎(chǔ)。有理數(shù)的乘法運(yùn)算和加法運(yùn)算一樣,都包括符號(hào)判定與絕對(duì)值運(yùn)算兩個(gè)步驟。因數(shù)不包含0的乘法運(yùn)算中積的符號(hào)取決于因數(shù)中所含負(fù)號(hào)的個(gè)數(shù)。當(dāng)負(fù)號(hào)的個(gè)數(shù)為奇數(shù)時(shí),積的符號(hào)為負(fù)號(hào);當(dāng)負(fù)號(hào)的個(gè)數(shù)為偶數(shù)時(shí),積的符號(hào)為正數(shù)。積的絕對(duì)值是各個(gè)因數(shù)的絕對(duì)值的積。運(yùn)用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡(jiǎn)化運(yùn)算過(guò)程。
難點(diǎn):
理解有理數(shù)的乘法法則。有理數(shù)的乘法法則中的“同號(hào)得正,異號(hào)得負(fù)”只是針對(duì)兩個(gè)因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號(hào)和積的絕對(duì)值的方法。即兩個(gè)因數(shù)符號(hào)相同,積的符號(hào)是正號(hào);兩個(gè)因數(shù)符號(hào)不同,積的符號(hào)是負(fù)號(hào)。積的絕對(duì)值是這兩個(gè)因數(shù)的絕對(duì)值的積。
(二)知識(shí)結(jié)構(gòu)
(三)教法建議
1。有理數(shù)乘法法則,實(shí)際上是一種規(guī)定。行程問(wèn)題是為了了解這種規(guī)定的合理性。
2。兩數(shù)相乘時(shí),確定符號(hào)的依據(jù)是“同號(hào)得正,異號(hào)得負(fù)”。絕對(duì)值相乘也就是小學(xué)學(xué)過(guò)的算術(shù)乘法。
3。基礎(chǔ)較差的同學(xué),要注意乘法求積的符號(hào)法則與加法求和的符號(hào)法則的區(qū)別。
4。幾個(gè)數(shù)相乘,如果有一個(gè)因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個(gè)因數(shù)為0。
5。小學(xué)學(xué)過(guò)的乘法交換律、結(jié)合律、分配律對(duì)有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6。如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)設(shè)計(jì)示例
有理數(shù)的乘法(第一課時(shí))
教學(xué)目標(biāo)
1。使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2。通過(guò)有理數(shù)的乘法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力;
3。通過(guò)教材給出的行程問(wèn)題,認(rèn)識(shí)數(shù)學(xué)來(lái)源于實(shí)踐并反作用于實(shí)踐。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):依據(jù)有理數(shù)的乘法法則,熟練進(jìn)行有理數(shù)的乘法運(yùn)算;
難點(diǎn):有理數(shù)乘法法則的理解。
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問(wèn)題
1。計(jì)算(—2)+(—2)+(—2)。
2。有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運(yùn)算是在有理數(shù)的什么范圍中進(jìn)行的?(非負(fù)數(shù))
3。有理數(shù)加減運(yùn)算中,關(guān)鍵問(wèn)題是什么?和小學(xué)運(yùn)算中最主要的不同點(diǎn)是什么?(符號(hào)問(wèn)題)[
4。根據(jù)有理數(shù)加減運(yùn)算中引出的新問(wèn)題主要是負(fù)數(shù)加減,運(yùn)算的關(guān)鍵是確定符號(hào)問(wèn)題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問(wèn)題是什么?(負(fù)數(shù)問(wèn)題,符號(hào)的確定)
二、師生共同研究有理數(shù)乘法法則
問(wèn)題1水庫(kù)的水位每小時(shí)上升3厘米,2小時(shí)上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米。
問(wèn)題2水庫(kù)的水位平均每小時(shí)下降3厘米,2小時(shí)上升多少厘米?
解:—3×2=—6(厘米)②
答:上升—6厘米(即下降6厘米)。
引導(dǎo)學(xué)生比較①,②得出:
把一個(gè)因數(shù)換成它的相反數(shù),所得的積是原來(lái)的積的相反數(shù)。
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(—2)=?(—3)×(—2)=?(學(xué)生答)
把3×(—2)和①式對(duì)比,這里把一個(gè)因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應(yīng)是原來(lái)的積“6”的相反數(shù)“—6”,即3×(—2)=—6。
把(—3)×(—2)和②式對(duì)比,這里把一個(gè)因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應(yīng)是原來(lái)的積“—6”的相反數(shù)“6”,即(—3)×(—2)=6。
此外,(—3)×0=0。
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;
任何數(shù)同0相乘,都得0。
繼而教師強(qiáng)調(diào)指出:
“同號(hào)得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意“負(fù)負(fù)得正”和“異號(hào)得負(fù)”。
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號(hào)法則:“同號(hào)得正,異號(hào)得負(fù)”,符號(hào)一旦確定,就歸結(jié)為小學(xué)的乘法了。
因此,在進(jìn)行有理數(shù)乘法時(shí),需要時(shí)時(shí)強(qiáng)調(diào):先定符號(hào)后定值。
三、運(yùn)用舉例,變式練習(xí)
例某一物體溫度每小時(shí)上升a度,現(xiàn)在溫度是0度。
(1)t小時(shí)后溫度是多少?
(2)當(dāng)a,t分別是下列各數(shù)時(shí)的結(jié)果:
①a=3,t=2;②a=—3,t=2;
②a=3,t=—2;④a=—3,t=—2;
教師引導(dǎo)學(xué)生檢驗(yàn)一下(2)中各結(jié)果是否合乎實(shí)際。
課堂練習(xí)
1。口答:
(1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;
(4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);
(7)(—6)×0;(8)0×(—6);
2。口答:
(1)1×(—5);(2)(—1)×(—5);(3)+(—5);
(4)—(—5);(5)1×a;(6)(—1)×a。
這一組題做完后讓學(xué)生自己總結(jié):一個(gè)數(shù)乘以1都等于它本身;一個(gè)數(shù)乘以—1都等于它的相反數(shù)。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同時(shí)教師強(qiáng)調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;—a未必是負(fù)數(shù),也可以是正數(shù)或0。
3。填空:
(1)1×(—6)=______;(2)1+(—6)=_______;
(3)(—1)×6=________;(4)(—1)+6=______;
(5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;
(9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。
4。判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
(1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個(gè)負(fù)數(shù)相乘得正數(shù),簡(jiǎn)單地說(shuō):“負(fù)負(fù)得正”。
五、作業(yè)
1。計(jì)算:
(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);
(4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。
2。填空(用“>”或“<”號(hào)連接):
(1)如果a<0,b<0,那么ab________0;
(2)如果a<0,b<0,那么ab_______0;
(3)如果a>0時(shí),那么a____________2a;
(4)如果a<0時(shí),那么a__________2a。
探究活動(dòng)
問(wèn)題:桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過(guò)若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案:“±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無(wú)法使這7只杯口全部朝下。道理很簡(jiǎn)單,用“+1”表示杯口朝上,“—1”表示杯口朝下,問(wèn)題就變成:“把7個(gè)+1每次改變其中4個(gè)的符號(hào),若干次后能否都變成—1?”考慮這7個(gè)數(shù)的乘積,由于每次都改變4個(gè)數(shù)的符號(hào),所以它們的乘積永遠(yuǎn)不變(為+1)。而7個(gè)杯口全部朝下時(shí),7個(gè)數(shù)的乘積等于—1,這是不可能的。
道理竟是如此簡(jiǎn)單,證明竟是如此巧妙,這要?dú)w功于“±1”語(yǔ)言。
有理數(shù)的乘法教案4
教學(xué)目標(biāo)
1理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號(hào)法則和絕對(duì)值運(yùn)算法則,并初步理解有理數(shù)乘法法則的合理性;
2能根據(jù)有理數(shù)乘法法則熟練地進(jìn)行有理數(shù)乘法運(yùn)算,使學(xué)生掌握多個(gè)有理數(shù)相乘的積的符號(hào)法則;
3三個(gè)或三個(gè)以上不等于0的有理數(shù)相乘時(shí),能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡(jiǎn)化運(yùn)算過(guò)程;
4通過(guò)有理數(shù)乘法法則及運(yùn)算律在乘法運(yùn)算中的運(yùn)用,培養(yǎng)學(xué)生的運(yùn)算能力;
5本節(jié)課通過(guò)行程問(wèn)題說(shuō)明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識(shí)來(lái)源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點(diǎn)、難點(diǎn)分析
重點(diǎn):
是否能夠熟練進(jìn)行有理數(shù)的乘法運(yùn)算。依據(jù)有理數(shù)的乘法法則和運(yùn)算律靈活進(jìn)行有理數(shù)乘法運(yùn)算是進(jìn)一步學(xué)習(xí)除法運(yùn)算和乘方運(yùn)算的基礎(chǔ)。有理數(shù)的乘法運(yùn)算和加法運(yùn)算一樣,都包括符號(hào)判定與絕對(duì)值運(yùn)算兩個(gè)步驟。因數(shù)不包含0的乘法運(yùn)算中積的符號(hào)取決于因數(shù)中所含負(fù)號(hào)的個(gè)數(shù)。當(dāng)負(fù)號(hào)的個(gè)數(shù)為奇數(shù)時(shí),積的符號(hào)為負(fù)號(hào);當(dāng)負(fù)號(hào)的個(gè)數(shù)為偶數(shù)時(shí),積的符號(hào)為正數(shù)。積的絕對(duì)值是各個(gè)因數(shù)的絕對(duì)值的積。運(yùn)用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡(jiǎn)化運(yùn)算過(guò)程。
難點(diǎn):
理解有理數(shù)的乘法法則。有理數(shù)的乘法法則中的同號(hào)得正,異號(hào)得負(fù)只是針對(duì)兩個(gè)因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號(hào)和積的絕對(duì)值的方法。即兩個(gè)因數(shù)符號(hào)相同,積的符號(hào)是正號(hào);兩個(gè)因數(shù)符號(hào)不同,積的符號(hào)是負(fù)號(hào)。積的絕對(duì)值是這兩個(gè)因數(shù)的絕對(duì)值的積。
(二)知識(shí)結(jié)構(gòu)
(三)教法建議
1有理數(shù)乘法法則,實(shí)際上是一種規(guī)定。行程問(wèn)題是為了了解這種規(guī)定的合理性。
2兩數(shù)相乘時(shí),確定符號(hào)的 依據(jù)是同號(hào)得正,異號(hào)得負(fù)。絕對(duì)值相乘也就是小學(xué)學(xué)過(guò)的算術(shù)乘法。
3基礎(chǔ)較差的同學(xué),要注意乘法求積的符號(hào)法則與加法求和的符號(hào)法則的區(qū)別。
4幾個(gè)數(shù)相乘,如果有一個(gè)因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個(gè)因數(shù)為0。
5小學(xué)學(xué)過(guò)的乘法交換律、結(jié)合律、分配律對(duì)有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)設(shè)計(jì)示例
有理數(shù)的乘法(第一課時(shí))
教學(xué)目標(biāo)
1使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2通過(guò)有理數(shù)的乘法運(yùn)算,培養(yǎng)學(xué)生的運(yùn)算能力;
3通過(guò)教材給出的行程問(wèn)題,認(rèn)識(shí)數(shù)學(xué)來(lái)源于實(shí)踐并反作用于實(shí)踐。
教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):依據(jù)有理數(shù)的乘法法則,熟練進(jìn)行有理數(shù)的乘法運(yùn)算;
難點(diǎn):有理數(shù)乘法法則的理解。
課堂教學(xué)過(guò)程設(shè)計(jì)
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問(wèn)題
1計(jì)算(—2)+(—2)+(—2)。
2有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運(yùn)算是在有理數(shù)的什么范圍中進(jìn)行的?(非負(fù)數(shù))
3有理數(shù)加減運(yùn)算中,關(guān)鍵問(wèn)題是什么?和小學(xué)運(yùn)算中最主要的不同點(diǎn)是什么?(符號(hào)問(wèn)題)[
4根據(jù)有理數(shù)加減運(yùn)算中引出的新問(wèn)題 主要是負(fù)數(shù)加減,運(yùn)算的關(guān)鍵是確定符號(hào)問(wèn)題,你能不能猜出在有 理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問(wèn)題是什么?(負(fù)數(shù)問(wèn)題,符號(hào)的確定)
二、師生共同研究有理數(shù)乘法法則
問(wèn)題1 水庫(kù)的水位每小時(shí)上升3厘米,2小時(shí)上升了多少厘米?
解:32=6(厘米) ①
答:上升了6厘米。
問(wèn)題2 水庫(kù)的水位平均每小時(shí)下降3厘米,2小時(shí)上升多少厘米?
解:—32=—6(厘米) ②
答:上升—6厘米(即下降6厘米)。
引導(dǎo)學(xué)生 比較①,②得出:
把一個(gè)因數(shù)換成它的相反數(shù),所得的積是原來(lái)的積的相反數(shù)。
這是一條很重要的結(jié)論,應(yīng)用此結(jié) 論 ,3(—2)=?(—3)(—2)=?(學(xué)生答)
把3(—2)和①式對(duì)比,這里把一個(gè)因數(shù)2換成了它的相反數(shù)—2,所得的積應(yīng)是原來(lái)的積6的相反數(shù)—6,即3(—2)=—6
把(—3)(—2)和②式對(duì)比,這里把一個(gè)因數(shù)2換成了它的相反數(shù)—2,所得的積應(yīng)是原來(lái)的積—6的相反數(shù)6,即(—3)(—2)=6
此外,(—3)0=0。
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘;
任何數(shù)同0相乘,都得0。
繼而教師強(qiáng)調(diào)指出:
同號(hào)得正中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意負(fù)負(fù)得正和異號(hào)得負(fù)。
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號(hào)法則:同號(hào)得正,異號(hào)得負(fù),符號(hào)一旦確定,就歸結(jié)為小學(xué)的乘法了。
因此,在進(jìn)行有理數(shù)乘法時(shí),需要時(shí)時(shí)強(qiáng)調(diào):先定符號(hào)后定值。
三、運(yùn)用舉例,變式練習(xí)
例 某一物體溫度每小時(shí)上升a度,現(xiàn)在溫度是0度。
(1)t小時(shí)后溫度是多少?
(2)當(dāng)a,t分別是下列各數(shù)時(shí)的結(jié)果:
①a=3,t=2;②a =—3,t=2;
②a=3,t=—2;④a=—3,t=—2;
教師引導(dǎo)學(xué)生檢驗(yàn)一下(2)中各結(jié)果是否合乎實(shí)際。
課堂練習(xí)
1口答:
(1)6 (2)(—6) (3)(—6)
(4)(—6) (5)(—6) (6) 6
(7)(—6) (8)0
2 口答:
(1)1 (2)(—1) (3)+(—5);
(4)—(—5); (5)1 (6)(—1)a。
這一組題做完后讓學(xué)生自己總結(jié):一個(gè)數(shù)乘以1都等于它本身;一個(gè)數(shù)乘以—1都等于它的相反數(shù)。+(—5)可以看成是1(—5),—(—5)可以看成是(—1)(—5)。同時(shí)教師強(qiáng)調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;—a未必是負(fù) 數(shù),也可以是正數(shù)或0。
3填空:
(1)1(—6)=______;(2)1+(—6)=____ ___;
(3)(—1)6=________;(4)(—1)+6=______;
(5)(—1)(—6)=______;(6)(—1)+(—6)=_____;
(9)|—7||—3|=_______;(10)(—7)(—3)=______。
4判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
(1)4x=—16; (2)—3x=18; (3)—9x=—36; (4)—5x=0。
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法 法則,大家要牢記,兩個(gè)負(fù)數(shù)相乘得正數(shù),簡(jiǎn)單地說(shuō):負(fù)負(fù)得正。
五、作業(yè)
1計(jì)算:
(1)(—16) (2)(—9)(—14); (3)(—36)
(4)100(—0。001); (5) —48(—125); (6)—45(—0。32)。
2填空(用或號(hào)連接):
(1)如果 a0,b0,那么 ab _______ _0;
(2)如果 a0,b0,那么ab _______0;
(3)如果a0時(shí),那么a ____________2a;
( 4)如果a0時(shí),那么a __________2a。
探究活動(dòng)
問(wèn)題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過(guò)若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案: 1將告訴你:不管你翻轉(zhuǎn)多少次,總是無(wú)法使這7只杯口全部朝下。道理很簡(jiǎn)單,用+1表示杯口朝上,—1表示杯口朝下,問(wèn)題就變成:把7個(gè)+1每次改變其中4個(gè)的符號(hào),若干次后能否都變成—1 ?考慮這7個(gè)數(shù)的乘積,由于每次都改變4個(gè)數(shù)的符號(hào),所以它們的乘積永遠(yuǎn)不變(為+1)。而7個(gè)杯口全部朝下時(shí),7個(gè)數(shù)的乘積等于—1,這是不可能的。
有理數(shù)的乘法教案5
【教學(xué)目標(biāo)】
1、鞏固有理數(shù)乘法法則;
2、探索多個(gè)有理數(shù)相乘時(shí),積的符號(hào)的確定方法、
【對(duì)話探索設(shè)計(jì)】
探索1
1、下列各式的積為什么是負(fù)的?
(1)—2345
(2)2(—3)4(—5)6789(—10)、
2、下列各式的積為什么是正的?
(1)(—2)(—3)456
(2)—2345(—6)78(—9)(—10)、
觀察1
P38、 觀察
思考?xì)w納
幾個(gè)不是0的數(shù)相乘,積的符號(hào)與負(fù)因數(shù)的個(gè)數(shù)之間有什么關(guān)系?
(見P38、思考)
與兩個(gè)有理數(shù)相乘一樣,幾個(gè)不等于0的有理數(shù)相乘,要先確定積的符號(hào),再確定積的絕對(duì)值
例題學(xué)習(xí)
P39、例3
觀察2
P39、 觀察
練習(xí)
P39、練習(xí)
作業(yè)
P46、7、(1),(2)(3),8,9,10,11、
補(bǔ)充練習(xí)
1、(1)若a = 3,a與2a哪個(gè)大?若 a= 0 呢? 又若 a=—3呢?
(2)a與2a哪個(gè)大?
(3)判斷:9a一定大于2a;
(4)判斷:9a一定不小于2a、
(5)判斷:9a有可能小于2a、
2、幾個(gè)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定 這句話錯(cuò)在哪里?
3、若ab,則acbc嗎?為什么?請(qǐng)舉例說(shuō)明、
4、若mn=0,那么一定有( )
(A)m=n=0、(B)m=0,n0、(C)m0,n=0、(D)m、n中至少有一個(gè)為0、
5、利用乘法法則完成下表,你能發(fā)現(xiàn)什么規(guī)律?
3210—1—2—3
39630—3
2622
1321
—1
—2
—3
6、(1)經(jīng)過(guò)調(diào)查發(fā)現(xiàn),若甲商店某種彩電降價(jià)的百分率記為a,則乙商店這種彩電降價(jià)的百分率可記為—a,你認(rèn)為哪家商店該彩電的降價(jià)的百分率大?為什么?
(2)經(jīng)過(guò)調(diào)查發(fā)現(xiàn),若甲商店某種彩電降價(jià)的百分率記為a,則乙商店這種彩電降價(jià)的百分率可記為1、2a,你認(rèn)為哪家商店該彩電的降價(jià)的百分率大?為什么?
有理數(shù)的乘法教案6
教學(xué)目標(biāo)
1.知識(shí)與技能
①經(jīng)歷探索有理數(shù)乘法法則的過(guò)程,發(fā)展觀察、歸納、猜想、驗(yàn)證的能力.
②會(huì)進(jìn)行有理數(shù)的乘法運(yùn)算.
2.過(guò)程與方法
通過(guò)對(duì)問(wèn)題的變式探索,培養(yǎng)觀察、分析、抽象的能力.
3.情感、態(tài)度與價(jià)值觀
通過(guò)觀察、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗(yàn)數(shù)學(xué)活動(dòng)中的探索性和創(chuàng)造性.
教學(xué)重點(diǎn)難點(diǎn)
重點(diǎn):能按有理數(shù)乘法法則進(jìn)行有理數(shù)乘法運(yùn)算.
難點(diǎn):含有負(fù)因數(shù)的乘法.
教與學(xué)互動(dòng)設(shè)計(jì)
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
做一做 出示一組算式,請(qǐng)同學(xué)們用計(jì)算器計(jì)算并找出它們的規(guī)律.
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解讀探究
想一想 你們發(fā)現(xiàn)積的符號(hào)與因數(shù)的符號(hào)之間的關(guān)系如何?
學(xué)生活動(dòng):計(jì)算、討論
總結(jié) 一正一負(fù)的兩個(gè)數(shù)的乘積為負(fù);兩正或兩負(fù)的乘積是正數(shù).
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù).
想一想 兩數(shù)相乘,積的絕對(duì)值是怎么得到的呢?
學(xué)生:是兩因數(shù)的絕對(duì)值的積.
有理數(shù)的乘法教案7
一、知識(shí)與能力
掌握有理數(shù)乘法以及乘法運(yùn)算律,熟練進(jìn)行有理數(shù)乘除運(yùn)算,發(fā)展觀察,歸納等方面的能力,用相關(guān)知識(shí)解決實(shí)際問(wèn)題的能力
二、過(guò)程與方法
經(jīng)歷歸納,總結(jié)有理數(shù)乘法,除法法則及乘法運(yùn)算律的過(guò)程,會(huì)觀察,選擇適當(dāng)?shù)摹⑤^簡(jiǎn)便的方法進(jìn)行有理數(shù)乘除運(yùn)算
三、情感、態(tài)度、價(jià)值觀
培養(yǎng)學(xué)生學(xué)習(xí)的自信心,上進(jìn)心,通過(guò)用乘除運(yùn)算解決簡(jiǎn)單的實(shí)際問(wèn)題,讓學(xué)生明確學(xué)習(xí)教學(xué)的目的是學(xué)以致用,從而培養(yǎng)學(xué)生的主動(dòng)性、積極性
四、教學(xué)重難點(diǎn)
一、重點(diǎn):熟練進(jìn)行有理數(shù)的`乘除運(yùn)算
二、難點(diǎn):正確進(jìn)行有理數(shù)的乘除運(yùn)算
預(yù)習(xí)導(dǎo)學(xué)
通過(guò)看課本§1.4的內(nèi)容,歸納有理數(shù)的乘法法則以及乘法運(yùn)算律
五、教學(xué)過(guò)程
一、創(chuàng)設(shè)情景,談話導(dǎo)入
我們已經(jīng)學(xué)習(xí)了有理數(shù)的乘除法,同學(xué)們歸納,總結(jié)一下有理數(shù)的乘法法則以及乘法運(yùn)算律
二、精講點(diǎn)撥質(zhì)疑問(wèn)難
根據(jù)預(yù)習(xí)內(nèi)容,同學(xué)們回答以下問(wèn)題:
1.有理數(shù)的乘法法則:
(1)同號(hào)兩數(shù)相乘___________________________________
(2)異號(hào)兩數(shù)相乘_____________________________________
(3)0與任何自然數(shù)相乘,得____
2.有理數(shù)的乘法運(yùn)算律:
(1)乘法交換律:ab=_________
(2)乘法結(jié)合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理數(shù)的除法法則:
除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的__________
比較有理數(shù)的乘法,除法法則,發(fā)現(xiàn)_________可能轉(zhuǎn)化為__________
三、課堂活動(dòng)強(qiáng)化訓(xùn)練
某公司去年1~3月份平均每月虧損1.5萬(wàn)元,4~6月份平均每月盈利2萬(wàn)元,7~10月份平均每月盈利1.7萬(wàn)元,11~12月份平均每月虧損2.3萬(wàn)元,這個(gè)公司去年總的盈虧情況如何?
注:學(xué)生分組討論練習(xí),教師在巡視過(guò)程中,引導(dǎo)、輔導(dǎo)部分基礎(chǔ)較差的學(xué)生后,各小組進(jìn)行交流,總結(jié)
四、延伸拓展,鞏固內(nèi)化
例2.(1)若ab=1,則a、b的關(guān)系為()
(2)下列說(shuō)法中正確的個(gè)數(shù)為( )
0除以任何數(shù)都得0
②如果=-
1,那么a是非負(fù)數(shù)若若⑤(c≠0)⑥()⑦1的倒數(shù)等于本身
A 1個(gè)B 2個(gè)C 3個(gè)D 4個(gè)
(3)兩個(gè)不為零的有理數(shù)相除,如果交換被除數(shù)與除數(shù)的關(guān)系,它們的商不變( )
A兩數(shù)相等B兩數(shù)互為相反數(shù)
C兩數(shù)互為倒數(shù)D兩數(shù)相等或互為相反數(shù)
有理數(shù)的乘法教案8
三維目標(biāo)
一、知識(shí)與技能
經(jīng)歷探索有理數(shù)乘法法則過(guò)程,掌握有理數(shù)的乘法法則,能用法則進(jìn)行有理數(shù)的乘法。
二、過(guò)程與方法
經(jīng)歷探索有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生歸納、猜想、驗(yàn)證等能力。
三、情感態(tài)度與價(jià)值觀
培養(yǎng)學(xué)生積極探索精神,感受數(shù)學(xué)與實(shí)際生活的聯(lián)系。
教學(xué)重、難點(diǎn)與關(guān)鍵
1.重點(diǎn):應(yīng)用法則正確地進(jìn)行有理數(shù)乘法運(yùn)算。
2.難點(diǎn):兩負(fù)數(shù)相乘,積的符號(hào)為正與兩負(fù)數(shù)相加和的符號(hào)為負(fù)號(hào)容易混淆。
3.關(guān)鍵:積的符號(hào)的確定。
教具準(zhǔn)備
投影儀。
四、教學(xué)過(guò)程
一、引入新課
在小學(xué),我們學(xué)習(xí)了正有理數(shù)有零的乘法運(yùn)算,引入負(fù)數(shù)后,怎樣進(jìn)行有理數(shù)的乘法運(yùn)算呢?
五、新授
課本第28頁(yè)圖1.4-1,一只蝸牛沿直線L爬行,它現(xiàn)在的位置恰在L上的點(diǎn)O.
(1)如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(2)如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(3)如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(4)如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4個(gè)問(wèn)題涉及2組相反意義的量:向右和向左爬行,3分鐘后與3分鐘前,為了區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正;為區(qū)分時(shí)間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正,那么(1)中2cm記作+2cm,3分后記作+3分。
有理數(shù)的乘法教案9
一、 教學(xué)目標(biāo)
1、 知識(shí)與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、 能力與過(guò)程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。
3、 情感與態(tài)度目標(biāo)
通過(guò)學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、 教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。
難點(diǎn):有理數(shù)乘法法則的探索過(guò)程,符號(hào)法則及對(duì)法則的理解。
三、 教學(xué)過(guò)程
1、 創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問(wèn)放水抗旱前水庫(kù)水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問(wèn)題
2、 小組探索、歸納法則
(1)教師出示以下問(wèn)題,學(xué)生以組為單位探索。
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较颍蛭鞯姆较驗(yàn)樨?fù)方向。
① 2 ×3
2看作向東運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
2 ×3=
② -2 ×3
-2看作向西運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
-2 ×3=
③ 2 ×(-3)
2看作向東運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
(-2) ×(-3)=
(2)學(xué)生歸納法則
①符號(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?
(+)×(+)=( ) 同號(hào)得
(-)×(+)=( ) 異號(hào)得
(+)×(-)=( ) 異號(hào)得
(-)×(-)=( ) 同號(hào)得
②積的絕對(duì)值等于 。
③任何數(shù)與零相乘,積仍為 。
(3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、 運(yùn)用法則計(jì)算,鞏固法則。
(1)教師按課本P75 例1板書,要求學(xué)生述說(shuō)每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做練習(xí),教師評(píng)析。
(4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。
有理數(shù)的乘法教案10
一、學(xué)習(xí)目標(biāo):
1. 熟練掌握有理數(shù)的乘法法 則
2. 會(huì)運(yùn)用乘法運(yùn)算率簡(jiǎn)化乘法運(yùn)算.
3. 了解互為倒數(shù)的意義,并會(huì)求一個(gè)非零有理數(shù)的倒數(shù)
二、學(xué)習(xí)重點(diǎn):探索有 理數(shù)乘法運(yùn)算律
學(xué)習(xí)難點(diǎn):運(yùn)用乘法運(yùn)算律簡(jiǎn)化計(jì)算
三、學(xué)習(xí)過(guò)程:
(一)、情境引入:
1、復(fù)習(xí)有理數(shù)的乘法法則(兩個(gè)因數(shù)、兩個(gè)以上的因數(shù)),并舉例說(shuō)明。
2、在含有負(fù)數(shù)的乘法運(yùn)算中,乘法交換律,結(jié)合律和分配律還成立嗎?
觀察 下列各有理數(shù)乘法,從中可得到怎樣的結(jié)論?
(1)(-6)(-7)= (-7)(-6)=
(2)[( -3)(-5)]2 = (-3)[(-5)2]=
(3)(-4)(- 3+5)= (-4 )(-3)+(-4)5=
3、請(qǐng)?jiān)倥e幾組數(shù)試一試,看上面所得的結(jié)論是否成立?
(二)、新課講解:
有理數(shù)乘法運(yùn)算律
交換律 ab =ba
結(jié)合律 ( ab)c=a(bc)
分配律 a(b+c)=ab+ac
例1.計(jì)算:
(1)8(- )(-0.125) (2)
(3)( )(-36) (4)
例2.計(jì)算
(1)8 (2)(4)( ) (3)( )( )
觀察例2中的三個(gè)運(yùn)算, 兩個(gè)因數(shù)有什么 特點(diǎn)?它們的乘積呢?你能夠得到什么結(jié)論?
(三)、鞏固練習(xí):
1.運(yùn)用運(yùn)算律填空.
(1)-2-3=-3(_____).
(2)[-32](-4)=-3[(______)(______)].
(3)-5[-2 +-3]=-5(_____)+(_____)-3
2.選擇題
(1)若a0 ,必有 ( )
A a0 B a0 C a,b同號(hào) D a,b異號(hào)
(2)利用分配律計(jì)算 時(shí),正確的方案可以是 ( )
A B
C D
3.運(yùn)用運(yùn)算律計(jì)算:
(1)(-25)(-85)(-4) (2) 14-12-1816
(3)6037-6017+6057 (4)18-23+1323-423
(5)(-4)(-18.36) (6)(- )0.125(-2 )
(7)(- + - - )(-20); (8)(-7.33)(42.07)+(-2.07)(-7.33)
四、課堂小結(jié):
通過(guò)本節(jié)課你學(xué)到了哪些知識(shí)?你 達(dá)成學(xué)習(xí)目標(biāo)了嗎?
五、作業(yè)布置:
課本第42頁(yè)習(xí)題2.5 第3題
數(shù)學(xué)評(píng)價(jià)手冊(cè)
六 、學(xué)后記/教后記
有理數(shù)的乘法教案11
有理數(shù)的乘法教案
學(xué)習(xí)目標(biāo):
1、理解有理數(shù)的運(yùn)算法則;能根據(jù)有理數(shù)乘法運(yùn)算法則進(jìn)行有理的簡(jiǎn)單運(yùn)算
2、經(jīng)歷探索有理數(shù)乘法法則過(guò)程,發(fā)展觀察、歸納、猜想、驗(yàn)證能力。
3、培養(yǎng)語(yǔ)言表達(dá)能力。調(diào)動(dòng)學(xué)習(xí)積極性,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。
學(xué)習(xí)重點(diǎn):有理數(shù)乘法
學(xué)習(xí)難點(diǎn):法則推導(dǎo)
教學(xué)方法:引導(dǎo)、探究、歸納與練習(xí)相結(jié)合
教學(xué)過(guò)程
一、學(xué)前準(zhǔn)備
計(jì)算:
(1)(一2)十(一2)
(2)(一2)十(一2)十(一2)
(3)(一2)十(一2)十(一2)十(一2)
(4)(一2)十(一2)十(一2)十(一2)十(一2)
猜想下列各式的值:
(一2)×2(一2)×3
(一2)×4(一2)×5
二、探究新知
1、自學(xué)有理數(shù)乘法中不同的形式,完成教科書中29~30頁(yè)的填空。
2、觀察以上各式,結(jié)合對(duì)問(wèn)題的研究,請(qǐng)同學(xué)們回答:
(1)正數(shù)乘以正數(shù)積為__________數(shù),(2)正數(shù)乘以負(fù)數(shù)積為__________數(shù),
(3)負(fù)數(shù)乘以正數(shù)積為__________數(shù),(4)負(fù)數(shù)乘以負(fù)數(shù)積為__________數(shù)。
提出問(wèn)題:一個(gè)數(shù)和零相乘如何解釋呢?
《1.4.1有理數(shù)的乘法》同步練習(xí)含解析
1、若有理數(shù)a,b滿足a+b<0,ab<0,則()
A、a,b都是正數(shù)
B、a,b都是負(fù)數(shù)
C、a,b中一個(gè)正數(shù),一個(gè)負(fù)數(shù),且正數(shù)的絕對(duì)值大于負(fù)數(shù)的絕對(duì)值
D、a,b中一個(gè)正數(shù),一個(gè)負(fù)數(shù),且負(fù)數(shù)的絕對(duì)值大于正數(shù)的絕對(duì)值
5、若a+b<0,ab<0,則()
A、a>0,b>0
B、a<0,b<0
C、a,b兩數(shù)一正一負(fù),且正數(shù)的絕對(duì)值大于負(fù)數(shù)的絕對(duì)值
D、a,b兩數(shù)一正一負(fù),且負(fù)數(shù)的絕對(duì)值大于正數(shù)的絕對(duì)值于0
《1.4.1.2有理數(shù)的乘法運(yùn)算律》課時(shí)練習(xí)含答案
2、大于—3且小于4的所有整數(shù)的積為()
A、—12 B、12 C、0 D、—144
2、3.125×(—23)—3.125×77=3.125×(—23—77)=3.125×(—100)=—312.5,這個(gè)運(yùn)算運(yùn)用了()
A、加法結(jié)合律
B、乘法結(jié)合律
C、分配律
D、分配律的逆用
3、下列運(yùn)算過(guò)程有錯(cuò)誤的個(gè)數(shù)是()
①×2=3—4×2
②—4×(—7)×(—125)=—(4×125×7)
③9×15=×15=150—
④[3×(—25)]×(—2)=3×[(—25)×(—2)]=3×50
A、1 B、2 C、3 D、4
4、絕對(duì)值不大于2 015的所有整數(shù)的積是。
5、在—6,—5,—1,3,4,7中任取三個(gè)數(shù)相乘,所得的積最小是,最大是。
6、計(jì)算(—8)×(—2)+(—1)×(—8)—(—3)×(—8)的結(jié)果為。
7、計(jì)算(1—2)×(2—3)×(3—4)×…×(2 014—2 015)×(2 015—2 016)的結(jié)果是。
有理數(shù)的乘法教案12
【編者按】教師在備課時(shí),應(yīng)充分估計(jì)學(xué)生在學(xué)習(xí)時(shí)可能提出的問(wèn)題,確定好重點(diǎn),難點(diǎn),疑點(diǎn),和關(guān)鍵。根據(jù)學(xué)生的實(shí)際改變?cè)鹊慕虒W(xué)計(jì)劃和方法,滿腔熱忱地啟發(fā)學(xué)生的思維,針對(duì)疑點(diǎn)積極引導(dǎo)。
一、 學(xué)情分析:
在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗(yàn),多數(shù)學(xué)生能在教師指導(dǎo)下探索問(wèn)題。由于學(xué)生已了解利用數(shù)軸表示加法運(yùn)算過(guò)程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運(yùn)算過(guò)程。
二、 課前準(zhǔn)備
把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個(gè)小組,以便組內(nèi)合作學(xué)習(xí)、組間競(jìng)爭(zhēng)學(xué)習(xí),形成良好的學(xué)習(xí)氣氛。
三、 教學(xué)目標(biāo)
1、 知識(shí)與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、 能力與過(guò)程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。
3、 情感與態(tài)度目標(biāo)
通過(guò)學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
四、 教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。
難點(diǎn):有理數(shù)乘法法則的探索過(guò)程,符號(hào)法則及對(duì)法則的理解。
五、 教學(xué)過(guò)程
1、 創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問(wèn)放水抗旱前水庫(kù)水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?
學(xué)生:
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問(wèn)題(教師板書課題)
2、 小組探索、歸納法則
教師出示以下問(wèn)題,學(xué)生以組為單位探索。
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较颍蛭鞯姆较驗(yàn)樨?fù)方向。
3、 運(yùn)用法則計(jì)算,鞏固法則。
(1)教師按課本P75 例1板書,要求學(xué)生述說(shuō)每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做 P76 練習(xí)1(1)(3),教師評(píng)析。
(4)教師引導(dǎo)學(xué)生做P75 例2,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。多個(gè)因數(shù)相乘,積的符號(hào)由 決定,當(dāng)負(fù)因數(shù)個(gè)數(shù)有 ,積為 ; 當(dāng)負(fù)因數(shù)個(gè)數(shù)有 ,積為 ;只要有一個(gè)因數(shù)為零,積就為 。
4、 討論對(duì)比,使學(xué)生知識(shí)系統(tǒng)化。
有理數(shù)乘法
有理數(shù)加法
同號(hào)
得正
取相同的符號(hào)
把絕對(duì)值相乘
(-2)(-3)=6
把絕對(duì)值相加
(-2)+(-3)=-5
異號(hào)
得負(fù)
取絕對(duì)值大的加數(shù)的符號(hào)
把絕對(duì)值相乘
(-2)3= -6
(-2)+3=1
用較大的絕對(duì)值減小的絕對(duì)值
任何數(shù)與零
得零
得任何數(shù)
5、 分層作業(yè),鞏固提高。
六、 教學(xué)反思:
本節(jié)課由情景引入,使學(xué)生迅速進(jìn)入角色,很快投入到探究有理數(shù)乘法法則上來(lái),提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實(shí)施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過(guò)程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿意。如果是在法則運(yùn)用時(shí),編制一些訓(xùn)練符號(hào)法則的口算題,把例2放在下一課時(shí)處理,效果可能更好。
【點(diǎn)評(píng)】:本節(jié)課張老師首先創(chuàng)設(shè)了一個(gè)密切社會(huì)生活的問(wèn)題情景抗旱,由此引入新課,并利用學(xué)生熟悉的數(shù)軸去探究有理數(shù)的乘法法則,充分體現(xiàn)了課程源于生活,服務(wù)于生活,學(xué)生的學(xué)習(xí)是在原有知識(shí)上的自我建構(gòu)的過(guò)程等理念,教學(xué)要面向?qū)W生的生活世界和社會(huì)實(shí)踐,教學(xué)活動(dòng)必須尊重學(xué)生已有的知識(shí)與經(jīng)驗(yàn),學(xué)生原有的知識(shí)和經(jīng)驗(yàn)是學(xué)習(xí)的基礎(chǔ),學(xué)生的學(xué)習(xí)是在原有知識(shí)和經(jīng)驗(yàn)基礎(chǔ)上的自我生成的過(guò)程。
探索有理數(shù)乘法法則是本節(jié)課的重點(diǎn),同時(shí)它又是一個(gè)具有探索性又有挑戰(zhàn)性的問(wèn)題,因此張老師在這一教學(xué)環(huán)節(jié)花了大量的時(shí)間,精心設(shè)計(jì)了問(wèn)題訓(xùn)練單,將學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)的原則分學(xué)習(xí)小組開展學(xué)習(xí)合作學(xué)習(xí),使學(xué)生經(jīng)歷了法則的探索過(guò)程,獲得了深層次的情感體驗(yàn),建構(gòu)知識(shí),獲得了解決問(wèn)題的方法,培養(yǎng)了學(xué)生的探索精神和創(chuàng)新能力。
為了讓學(xué)生將獲得的新知識(shí)納入到原有的認(rèn)知結(jié)構(gòu)中去,便于記憶和提取,在教學(xué)的最后環(huán)節(jié),張老師組織學(xué)生對(duì)有理數(shù)的乘法和有理數(shù)的加法進(jìn)行對(duì)比,通過(guò)討論、比較使知識(shí)系統(tǒng)化、條理化,從而使自己的認(rèn)知結(jié)構(gòu)不斷地得以優(yōu)化。學(xué)生自己建構(gòu)知識(shí),是建構(gòu)主義學(xué)習(xí)觀的基本觀點(diǎn),當(dāng)新知識(shí)獲得之后,必須按一定方式加以組織,為新知識(shí)找到家,并為新知識(shí)安家落戶。
學(xué)生是一個(gè)活生生的人,是一個(gè)發(fā)展中的人,學(xué)生間的發(fā)展是極不平衡的,為了尊重學(xué)生的差異,以學(xué)生個(gè)體發(fā)展為本,張老師在教學(xué)中利用學(xué)生的個(gè)人性格不同,采用異質(zhì)分組,使不同性格的學(xué)生組對(duì)交流、互換角色,達(dá)到了性格互補(bǔ)的目的。采取分層作業(yè)的方式,讓不同的人在數(shù)學(xué)學(xué)習(xí)中得到了不同的發(fā)展,使每個(gè)人的認(rèn)識(shí)都得到完善,這正是新課程發(fā)展的核心理念──為了每一位學(xué)生的發(fā)展的具體體現(xiàn)。
本節(jié)課我們也同時(shí)看到在新課引入和法則探究?jī)蓚(gè)教學(xué)環(huán)節(jié)中,張老師的設(shè)計(jì)與教材完全不同,充分體現(xiàn)了教師是用教材,而不是教教材,這也是新課程所倡導(dǎo)的教學(xué)理念。教師教教科書是傳統(tǒng)的教書匠的表現(xiàn),用教科書教才是現(xiàn)代教師應(yīng)有的姿態(tài)。我們教師應(yīng)從學(xué)生實(shí)際出發(fā),因材施教,創(chuàng)造性地使用教材,大膽對(duì)教材內(nèi)容進(jìn)行取舍、深加工、再創(chuàng)造,設(shè)計(jì)出活生生的、豐富多彩的課來(lái),充分有效地將教材的知識(shí)激活,形成有教師個(gè)性的教材知識(shí)。既要有能力把問(wèn)題簡(jiǎn)明地闡述清楚,同時(shí)也要有能力引導(dǎo)學(xué)生去探索、去自主學(xué)習(xí)。
有理數(shù)的乘法教案13
一、學(xué)情分析:
在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗(yàn),多數(shù)學(xué)生能在教師指導(dǎo)下探索問(wèn)題。由于學(xué)生已了解利用數(shù)軸表示加法運(yùn)算過(guò)程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運(yùn)算過(guò)程。
二、課前準(zhǔn)備
把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個(gè)小組,以便組內(nèi)合作學(xué)習(xí)、組間競(jìng)爭(zhēng)學(xué)習(xí),形成良好的學(xué)習(xí)氣氛。
三、教學(xué)目標(biāo)
1、知識(shí)與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進(jìn)行有理數(shù)乘法運(yùn)算。
2、能力與過(guò)程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過(guò)程,發(fā)展學(xué)生觀察、歸納、猜測(cè)、驗(yàn)證等能力。
3、情感與態(tài)度目標(biāo)
通過(guò)學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
四、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):運(yùn)用有理數(shù)乘法法則正確進(jìn)行計(jì)算。
難點(diǎn):有理數(shù)乘法法則的探索過(guò)程,符號(hào)法則及對(duì)法則的理解。
五、教學(xué)過(guò)程
1、創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長(zhǎng)期干旱,水庫(kù)放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問(wèn)放水抗旱前水庫(kù)水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?
學(xué)生:……
教師:這涉及有理數(shù)乘法運(yùn)算法則,正是我們今天需要討論的問(wèn)題(教師板書課題)
2、小組探索、歸納法則
(1)教師出示以下問(wèn)題,學(xué)生以組為單位探索。
以原點(diǎn)為起點(diǎn),規(guī)定向東的方向?yàn)檎较颍蛭鞯姆较驗(yàn)樨?fù)方向。
a.2×3
2看作向東運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
2×3=
b.-2×3
-2看作向西運(yùn)動(dòng)2米,×3看作向原方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
-2×3=
c.2×(-3)
2看作向東運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
2×(-3)=
d.(-2)×(-3)
-2看作向西運(yùn)動(dòng)2米,×(-3)看作向反方向運(yùn)動(dòng)3次。
結(jié)果:向 運(yùn)動(dòng) 米
(-2)×(-3)=
e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。
(2)學(xué)生歸納法則
a.符號(hào):在上述4個(gè)式子中,我們只看符號(hào),有什么規(guī)律?
(+)×(+)=同號(hào)得
(-)×(+)=異號(hào)得
(+)×(-)=異號(hào)得
(-)×(-)=同號(hào)得
b.積的絕對(duì)值等于 。
c.任何數(shù)與零相乘,積仍為 。
(3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、運(yùn)用法則計(jì)算,鞏固法則。
(1)教師按課本P75例1板書,要求學(xué)生述說(shuō)每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個(gè)有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做P76練習(xí)1(1)(3),教師評(píng)析。
(4)教師引導(dǎo)學(xué)生做P75例2,讓學(xué)生說(shuō)出每步法則,使之進(jìn)一步熟悉法則,同時(shí)讓學(xué)生總結(jié)出多因數(shù)相乘的符號(hào)法則。多個(gè)因數(shù)相乘,積的符號(hào)由 決定,當(dāng)負(fù)因數(shù)個(gè)數(shù)有 ,積為 ;當(dāng)負(fù)因數(shù)個(gè)數(shù)有 ,積為 ;只要有一個(gè)因數(shù)為零,積就為 。
4、討論對(duì)比,使學(xué)生知識(shí)系統(tǒng)化。
有理數(shù)乘法有理數(shù)加法
同號(hào)得正取相同的符號(hào)
把絕對(duì)值相乘
(-2)×(-3)=6把絕對(duì)值相加
(-2)+(-3)=-5
異號(hào)得負(fù)取絕對(duì)值大的加數(shù)的符號(hào)
把絕對(duì)值相乘
(-2)×3=-6(-2)+3=1
用較大的絕對(duì)值減小的絕對(duì)值
任何數(shù)與零得零得任何數(shù)
5、分層作業(yè),鞏固提高。
六、教學(xué)反思:
本節(jié)課由情景引入,使學(xué)生迅速進(jìn)入角色,很快投入到探究有理數(shù)乘法法則上來(lái),提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實(shí)施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過(guò)程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿意。如果是在法則運(yùn)用時(shí),編制一些訓(xùn)練符號(hào)法則的口算題,把例2放在下一課時(shí)處理,效果可能更好。
有理數(shù)的乘法教案14
一、學(xué)情分析:
1、學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過(guò)非負(fù)有理數(shù)的四則運(yùn)算以及運(yùn)算律。在本章的前面幾節(jié)課中,又學(xué)習(xí)了數(shù)軸、相反數(shù)、絕對(duì)值的有關(guān)概念,并掌握了有理數(shù)的加減運(yùn)算法則及其混和運(yùn)算的方法,學(xué)會(huì)了由運(yùn)算解決簡(jiǎn)單的實(shí)際問(wèn)題,具備了學(xué)習(xí)有理數(shù)乘法的知識(shí)技能基礎(chǔ)。
2、學(xué)生的活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在相關(guān)知識(shí)的學(xué)習(xí)過(guò)程中,學(xué)生已經(jīng)歷了探索加法運(yùn)算法則的活動(dòng),并且通過(guò)觀察"水位的變化",運(yùn)用有理數(shù)的加法法則解決了一些實(shí)際問(wèn)題,從而獲得了較為豐富的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),同時(shí)在以前的學(xué)習(xí)中,學(xué)生曾經(jīng)歷了合作學(xué)習(xí)和探索學(xué)習(xí)的過(guò)程,具有了合作和探索的意識(shí)。
二、 教材分析:
教科書基于學(xué)生已掌握了有理數(shù)加法、減法運(yùn)算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習(xí)任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會(huì)進(jìn)行有理數(shù)的運(yùn)算。
本節(jié)課的數(shù)學(xué)目標(biāo)是:
1、經(jīng)歷探索有理數(shù)乘法法則的過(guò)程,發(fā)展觀察、歸納、猜想、驗(yàn)證能力;
2、學(xué)會(huì)進(jìn)行有理數(shù)的乘法運(yùn)算,掌握確定多個(gè)不等于零的有理數(shù)相乘的積的符號(hào)方法以及有一個(gè)數(shù)為零積是零的情況:
三、教學(xué)過(guò)程設(shè)計(jì):
本節(jié)課設(shè)計(jì)了六個(gè)環(huán)節(jié):第一環(huán)節(jié):?jiǎn)栴}情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗(yàn)證明確結(jié)論;第四環(huán)節(jié):運(yùn)用鞏固,練習(xí)提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):?jiǎn)栴}情境,引入新課
問(wèn)題:(1)觀察教科書給出的圖片,分析教科書提出的問(wèn)題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。
(2)如果用正號(hào)表示水位上升,用負(fù)號(hào)表示水位下降,討論四天后,甲水庫(kù)水位的變化量的表示法和乙水庫(kù)水位變化量的表示法。
設(shè)計(jì)意圖:培養(yǎng)學(xué)生從圖形語(yǔ)言和文字語(yǔ)言中獲取信息的能力,感受用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,體驗(yàn)算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。
第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論
問(wèn)題:(1)由課題引入中知道:4個(gè)-3相加等于-12,可以寫成算式
(-3×4)=-12,那么下列一組算式的結(jié)果應(yīng)該如何計(jì)算?請(qǐng)同學(xué)們思考:
(-3)×3=_____;
(-3)×2=_____;
(-3)×1=_____;
(-3)×0=_____。
(2)當(dāng)同學(xué)們寫出結(jié)果并說(shuō)明道理時(shí),讓學(xué)生通過(guò)觀察這組算式等號(hào)兩邊的特點(diǎn)去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:
(-3)×(-1)=_____;
(-3)×(-2)=_____;
(-3)×(-3)=_____;
(-3)×(-4)=_____。
教前設(shè)計(jì)意圖:以算式求解和探究問(wèn)題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負(fù)數(shù)與非負(fù)數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負(fù)數(shù)與負(fù)數(shù)相乘的積是多少,通過(guò)對(duì)兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語(yǔ)言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項(xiàng):(1)本環(huán)節(jié)的設(shè)計(jì)理念是學(xué)生通過(guò)觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過(guò)程,并在合作交流中互相補(bǔ)充,完善結(jié)論。但在實(shí)際過(guò)程中,學(xué)生對(duì)結(jié)論的表述有困難,或者表達(dá)不準(zhǔn)確,不全面,對(duì)于這些問(wèn)題,不能求全責(zé)備,而應(yīng)循循善誘,順勢(shì)引導(dǎo),幫助學(xué)生盡可能簡(jiǎn)練準(zhǔn)確的表述,也不要擔(dān)心時(shí)間不足而代替學(xué)生直接表述法則。
(2)展示兩組算式時(shí),注意板書藝術(shù),把算式豎排,并對(duì)齊書寫,這樣易于學(xué)生觀察特點(diǎn),發(fā)現(xiàn)規(guī)律。
第三環(huán)節(jié):驗(yàn)證明確結(jié)論
問(wèn)題:針對(duì)上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘,任何數(shù)與零相乘,積仍為零。進(jìn)行驗(yàn)證活動(dòng),出示一組算式由學(xué)生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
4×(-1)=_____;
(—4)×0=_____;
(—4)×1=_____;
(—4)×2=_____;
(—4)×(-1)=_____;
(—4)×(-2)=_____。
教前設(shè)計(jì)意圖:這個(gè)環(huán)節(jié)的設(shè)計(jì)一方面是因?yàn)樗呛锨橥评淼谋匾h(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合
一般情況,所以要加以驗(yàn)證和證明它的正確性。同時(shí),驗(yàn)證的過(guò)程本身就是對(duì)有理數(shù)乘法法則的練習(xí)和熟悉過(guò)程。
教后反思事項(xiàng):(1)教科書中沒(méi)有這個(gè)環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計(jì)這個(gè)環(huán)節(jié),確實(shí)讓學(xué)生體驗(yàn)經(jīng)歷驗(yàn)證過(guò)程。
(2)本環(huán)節(jié)的重點(diǎn)是驗(yàn)證乘法法則的正確性而不是運(yùn)用乘法法則計(jì)算。所以在驗(yàn)證過(guò)程中,既要用乘法法則計(jì)算,又要加法法則計(jì)算,真正體現(xiàn)驗(yàn)證的作用和過(guò)程。
(3)在用乘法法則計(jì)算時(shí),要注意其運(yùn)算步驟與加法運(yùn)算一樣,都是先確定結(jié)果的符號(hào),再進(jìn)行絕對(duì)值的運(yùn)算。另外還應(yīng)注意:法則中的“同號(hào)得正,異號(hào)得負(fù)”是專指“兩數(shù)相乘而言的,”不可以運(yùn)用到加法運(yùn)算中去。
第四環(huán)節(jié):運(yùn)用鞏固,練習(xí)提高
活動(dòng)內(nèi)容:
(1)1。計(jì)算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
(2)2。計(jì)算:
⑴(-4)×5×(-0。25); ⑵(-3÷5)×(-5÷6)×(-2);
3。“議一議”:幾個(gè)有理數(shù)相乘,因數(shù)都不為零時(shí),積的符號(hào)怎樣確定?有一個(gè)因數(shù)為零時(shí),積是多少?
(4)計(jì)算:
⑴(-8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
⑸5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設(shè)計(jì)意圖:對(duì)有理數(shù)乘法法則的鞏固和運(yùn)用,練習(xí)和提高.
教后反思事項(xiàng):(1)學(xué)生先自主嘗試解決,全班交流,教師點(diǎn)撥要注意格式規(guī)范,一開始對(duì)每一步運(yùn)算應(yīng)注明理由,運(yùn)算熟練后,可不要求書寫每一步的理由;
(2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵(lì)學(xué)生通過(guò)對(duì)例2的運(yùn)算結(jié)果觀察分析,用自己的語(yǔ)言表達(dá)所發(fā)現(xiàn)的規(guī)律,學(xué)生有困難時(shí),教師可設(shè)置如下一組算式讓學(xué)生計(jì)算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個(gè)任務(wù)。
(-1)×2×3×4=_____;
(-1)×(-2)×3×4=_____;
(-1)×(-2)×(-3)×4=_____;
(-1)×(-2)×(-3)×(-4)=_____;
(-1)×(-2)×(-3)×(-4)×0=_____。
通過(guò)對(duì)以上算式的計(jì)算和觀察,學(xué)生不難得出結(jié)論:多個(gè)數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積的符號(hào)為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積的符號(hào)為正。只要有一個(gè)數(shù)為零,積就為零。當(dāng)然這段語(yǔ)言,不需要讓學(xué)習(xí)背誦,只要理解會(huì)用即可。
第五環(huán)節(jié):感悟反思課堂
問(wèn)題
1.本節(jié)課大家學(xué)會(huì)了什么?
2.有理數(shù)乘法法則如何敘述?”
3.有理數(shù)乘法法則的探索采用了什么方法?
4.你的困惑是什么
教前設(shè)計(jì)意圖:培養(yǎng)學(xué)生的口頭表達(dá)能力,提高學(xué)生的參與意識(shí)。激勵(lì)學(xué)生展示自我。
教后反思事項(xiàng):學(xué)生時(shí),可能會(huì)有語(yǔ)言表達(dá)障礙或表達(dá)不流暢,但只要不影響運(yùn)算的正確性,則不必強(qiáng)調(diào)準(zhǔn)確記憶,而應(yīng)鼓勵(lì)學(xué)生大膽發(fā)言,同時(shí)教師可用準(zhǔn)確的語(yǔ)言適時(shí)的加以點(diǎn)撥。
第六環(huán)節(jié):布置作業(yè)
鞏固作業(yè):教科書知識(shí)技能1、2;問(wèn)題解決1;聯(lián)系擴(kuò)廣1
預(yù)習(xí)作業(yè);略
四、教學(xué)反思:
1、設(shè)計(jì)條理的問(wèn)題串,使觀察、猜想、驗(yàn)證水到渠成
2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當(dāng)引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。
3、合理使用多媒體教學(xué)手段可以彌補(bǔ)課堂時(shí)間的不足,但絕不能代替必要的板書。
有理數(shù)的乘法教案15
目標(biāo):
1、知識(shí)與技能
使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)的乘法法則,能熟練地進(jìn)行有理數(shù)的乘法運(yùn)算。
2、過(guò)程與方法
經(jīng)歷探索有理數(shù)乘法法則的過(guò)程,理解有理數(shù)乘法法則,發(fā)展觀察、探究、合情推理等能力,會(huì)進(jìn)行有理數(shù)和乘法運(yùn)算。
重點(diǎn)、難點(diǎn):
1、重點(diǎn):有理數(shù)乘法法則。
2、難點(diǎn):有理數(shù)乘法意義的理解,確定有理數(shù)乘法積的符號(hào)。
過(guò)程:
一、創(chuàng)設(shè)情景,導(dǎo)入新
1、由前面的學(xué)習(xí)我們知道,正數(shù)的加減法可以擴(kuò)充到有理數(shù)的加減法,那么乘法是可也可以擴(kuò)充呢?
乘法是加法的特殊運(yùn)算,例如5+5+5=5×3,那么請(qǐng)思考:
(-5)+(-5)+(-5)與(-5)×3是否有相同的結(jié)果呢?本節(jié)我們就探究這個(gè)問(wèn)題。
3、在一條由西向東的筆直的馬路上,取一點(diǎn)O,以向東的路程為正,則向西的路程為負(fù),如果小玫從點(diǎn)O出發(fā),以5千米的向西行走,那么經(jīng)過(guò)3小時(shí),她走了多遠(yuǎn)?
二、合作交流,解讀探究
1、小學(xué)學(xué)過(guò)的乘法的意義是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果兩個(gè)數(shù)的和為0,那么這兩個(gè)數(shù) 互為相反數(shù) 。
2、由前面的問(wèn)題3,根據(jù)小學(xué)學(xué)過(guò)的乘法意義,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、學(xué)生活動(dòng):計(jì)算3×(-5)+3×5,注意運(yùn)用簡(jiǎn)便運(yùn)算
通過(guò)計(jì)算表明3×(-5)與3×5互為相反數(shù),從而有
3×(-5)=-(3×5),由此看出,3×(-5)得負(fù)數(shù),并且把絕對(duì)值3與5相乘。
類似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正數(shù),并且把絕對(duì)值5與3相乘。
4、提出:從以上的運(yùn)算中,你能總結(jié)出有理數(shù)的乘法法則嗎?
鼓勵(lì)學(xué)生自己歸納,并用自己的語(yǔ)舞衫歌扇,并與同伴交流。
在學(xué)生猜測(cè)、歸納、交流的過(guò)程中及時(shí)引導(dǎo)、肯定
兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。
任何數(shù)與0相乘,積仍為0
(板書)有理數(shù)乘法法則:
三、應(yīng)用遷移,鞏固提高
1、計(jì)算
(-5)×(-4) 2×(-3.5) × (-0.75)×0
(1)學(xué)生根據(jù)乘法法則,在練習(xí)本上完成。指定四位同學(xué)到黑板演習(xí)。
(2)教師:要求學(xué)生明確算理,學(xué)生做練習(xí)時(shí),教師巡視,及時(shí)引導(dǎo)。
2、計(jì)算下列各題
① (-4)×5×(-0.25) ② ×( )×(-2)
③ ×( )×0×( )
指定三名同學(xué)在黑板上做,使學(xué)生明確,做有理數(shù)的乘法時(shí),要先確定積的符號(hào),再求出積的絕對(duì)值。
教師提出問(wèn)題:幾個(gè)有理數(shù)相乘時(shí),因數(shù)都不為0時(shí),積是多少?
學(xué)生小結(jié)后,教師歸納:
幾個(gè)不為0的有理數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的符號(hào)決定,負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正;只要有一個(gè)因數(shù)為0,則積為0
練習(xí):本P31練習(xí)
四、總結(jié)反思(學(xué)生先小結(jié))
1、有理數(shù)乘法法則
2、有理數(shù)乘法的一般步驟是:
(1)確定積的符號(hào); (2)把絕對(duì)值相乘。
五、作業(yè):P39習(xí)題1.5 A組 1、2
【有理數(shù)的乘法教案】相關(guān)文章:
有理數(shù)乘法的教案07-04
有理數(shù)的乘法教案06-20
有理數(shù)的乘法教案09-05
有理數(shù)的乘法教案范文07-04
有理數(shù)的乘法優(yōu)質(zhì)教案06-26
數(shù)學(xué)有理數(shù)的乘法教案03-07
有理數(shù)的乘法教案范文08-25
有理數(shù)的乘法優(yōu)秀教案09-07