www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    二次根式教案

    時間:2022-12-25 19:02:13 教案 我要投稿
    • 相關(guān)推薦

    二次根式教案模板九篇

      作為一名優(yōu)秀的教育工作者,通常需要準(zhǔn)備好一份教案,借助教案可以有效提升自己的教學(xué)能力。我們應(yīng)該怎么寫教案呢?以下是小編整理的二次根式教案9篇,希望能夠幫助到大家。

    二次根式教案模板九篇

    二次根式教案 篇1

      教學(xué)設(shè)計思想

      新教材打破了舊教材從定義出發(fā),由理論到理論,按部就班的舊格局,創(chuàng)造出從實(shí)踐到理論再回到實(shí)踐,由淺入深,符合認(rèn)知結(jié)構(gòu)的新模式。本節(jié)首先通過四個實(shí)際問題引出二次根式的概念,給出二次根式的意義。然后讓學(xué)生通過二次根式的意義和算術(shù)平方根的意義找出二次根式的三個性質(zhì)。本節(jié)通過學(xué)生所熟悉的實(shí)際問題建立二次根式的概念,使學(xué)生在經(jīng)歷將現(xiàn)實(shí)問題符號化的過程中,進(jìn)一步體會二次根式的重要作用,發(fā)展學(xué)生的應(yīng)用意識。

      教學(xué)目標(biāo)

      知識與技能

      1.知道什么是二次根式,并會用二次根式的意義解題;

      2.熟記二次根式的性質(zhì),并能靈活應(yīng)用;

      過程與方法

      通過二次根式的概念和性質(zhì)的學(xué)習(xí),培養(yǎng)邏輯思維能力;

      情感態(tài)度價值觀

      1.經(jīng)歷將現(xiàn)實(shí)問題符號化的過程,發(fā)展應(yīng)用的意識;

      2.通過二次根式性質(zhì)的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

      教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):(1)二次根式的意義;(2)二次根式中字母的取值范圍;

      難點(diǎn):確定二次根式中字母的取值范圍。

      教學(xué)方法

      啟發(fā)式、講練結(jié)合

      教學(xué)媒體

      多媒體

      課時安排

      1課時

    二次根式教案 篇2

      一、內(nèi)容和內(nèi)容解析

      1.內(nèi)容

      二次根式的性質(zhì)。

      2.內(nèi)容解析

      本節(jié)教材是在學(xué)生學(xué)習(xí)二次根式概念的基礎(chǔ)上,結(jié)合二次根式的概念和算術(shù)平方根的概念,通過觀察、歸納和思考得到二次根式的兩個基本性質(zhì).

      對于二次根式的性質(zhì),教材沒有直接從算術(shù)平方根的意義得到,而是考慮學(xué)生的年齡特征,先通過 “探究”欄目中給出四個具體問題,讓學(xué)生學(xué)生根據(jù)算術(shù)平方根的意義,就具體數(shù)字進(jìn)行分析得出結(jié)果,再分析這些結(jié)果的共同特征,由特殊到一般地歸納出結(jié)論.基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn)為:理解二次根式的性質(zhì).

      二、目標(biāo)和目標(biāo)解析

      1.教學(xué)目標(biāo)

      (1)經(jīng)歷探索二次根式的性質(zhì)的過程,并理解其意義;

      (2)會運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

      (3)了解代數(shù)式的概念.

      2.目標(biāo)解析

      (1)學(xué)生能根據(jù)具體數(shù)字分析和算術(shù)平方根的意義,由特殊到一般地歸納出二次根式的性質(zhì),會用符號表述這一性質(zhì);

      (2)學(xué)生能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡;

      (3)學(xué)生能從已學(xué)過的各種式子中,體會其共同特點(diǎn),得出代數(shù)式的概念.

      三、教學(xué)問題診斷分析

      二次根式的性質(zhì)是二次根式化簡和運(yùn)算的重要基礎(chǔ).學(xué)生根據(jù)二次根式的概念和算術(shù)平方根的意義,由特殊到一般地得出二次根式的性質(zhì)后,重在能靈活運(yùn)用二次根式的性質(zhì)進(jìn)行二次根式的化簡和解決一些綜合性較強(qiáng)的問題.由于學(xué)生初次學(xué)習(xí)二次根式的性質(zhì),對二次根式性質(zhì)的靈活運(yùn)用存在一定的困難,突破這一難點(diǎn)需要教師精心設(shè)計好每一道習(xí)題,讓學(xué)生在練習(xí)中進(jìn)一步掌握二次根式的性質(zhì),培養(yǎng)其靈活運(yùn)用的能力.

      本節(jié)課的教學(xué)難點(diǎn)為:二次根式性質(zhì)的靈活運(yùn)用.

      四、教學(xué)過程設(shè)計

      1.探究性質(zhì)1

      問題1 你能解釋下列式子的含義嗎?

      師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

      【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個非負(fù)數(shù)的算術(shù)平方根的平方.

      問題2 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

      師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

      【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)1作鋪墊.

      問題3 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

      師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0).

      【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)1,培養(yǎng)學(xué)生抽象概括的能力.

      例2 計算

      (1) ;(2) .

      師生活動:學(xué)生獨(dú)立完成,集體訂正.

      【設(shè)計意圖】鞏固二次根式的性質(zhì)1,學(xué)會靈活運(yùn)用.

      2.探究性質(zhì)2

      問題4 你能解釋下列式子的含義嗎?

      師生活動:教師引導(dǎo)學(xué)生說出每一個式子的含義.

      【設(shè)計意圖】讓學(xué)生初步感知,這些式子都表示一個數(shù)的平方的算術(shù)平方根.

      問題5 根據(jù)算術(shù)平方根的意義填空,并說出得到結(jié)論的依據(jù).

      師生活動 學(xué)生獨(dú)立完成填空后,讓學(xué)生展示其思維過程,說出得到結(jié)論的依據(jù).

      【設(shè)計意圖】學(xué)生通過計算或根據(jù)算術(shù)平方根的意義得出結(jié)論,為歸納二次根式的性質(zhì)2作鋪墊.

      問題6 從以上的結(jié)論中你能發(fā)現(xiàn)什么規(guī)律?你能用一個式子表示這個規(guī)律嗎?

      師生活動:引導(dǎo)學(xué)生歸納得出二次根式的性質(zhì): ( ≥0)

      【設(shè)計意圖】讓學(xué)生經(jīng)歷從特殊到一般的過程,概括出二次根式的性質(zhì)2,培養(yǎng)學(xué)生抽象概括的能力.

      例3 計算

      (1) ;(2) .

      師生活動:學(xué)生獨(dú)立完成,集體訂正.

      【設(shè)計意圖】鞏固二次根式的性質(zhì)2,學(xué)會靈活運(yùn)用.

      3.歸納代數(shù)式的概念

      問題7 回顧我們學(xué)過的式子,如, ( ≥0),這些式子有哪些共同特征?

      師生活動:學(xué)生概括式子的共同特征,得出代數(shù)式的概念.

      【設(shè)計意圖】學(xué)生通過觀察式子的共同特征,形成代數(shù)式的概念,培養(yǎng)學(xué)生的概括能力.

      4.綜合運(yùn)用

      (1)算一算:

      【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,第(2)、(3)、(4)小題要特別注意結(jié)果的符號.

      (2)想一想: 中, 的取值范圍是什么?當(dāng) ≥0時, 等于多少?當(dāng) 時, 又等于多少?

      【設(shè)計意圖】通過此問題的設(shè)計,加深學(xué)生對 的理解,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

      (3)談一談你對 與 的認(rèn)識.

      【設(shè)計意圖】加深學(xué)生對二次根式性質(zhì)的理解.

      5.總結(jié)反思

      (1)你知道了二次根式的哪些性質(zhì)?

      (2)運(yùn)用二次根式性質(zhì)進(jìn)行化簡需要注意什么?

      (3)請談?wù)劙l(fā)現(xiàn)二次根式性質(zhì)的思考過程?

      (4)想一想,到現(xiàn)在為止,你學(xué)習(xí)了哪幾類字母表示數(shù)得到的式子?說說你對代數(shù)式的認(rèn)識.

      6.布置作業(yè):教科書習(xí)題16.1第2,4題.

      五、目標(biāo)檢測設(shè)計

      1. ; ; .

      【設(shè)計意圖】考查對二次根式性質(zhì)的理解.

      2.下列運(yùn)算正確的是( )

      A. B. C. D.

      【設(shè)計意圖】考查學(xué)生運(yùn)用二次根式的性質(zhì)進(jìn)行化簡的能力.

      3.若 ,則 的取值范圍是 .

      【設(shè)計意圖】考查學(xué)生對一個數(shù)非負(fù)數(shù)的算術(shù)平方根的理解.

      4.計算: .

      【設(shè)計意圖】考查二次根式性質(zhì)的靈活運(yùn)用.

    二次根式教案 篇3

      教學(xué)目的:

      1、在二次根式的混合運(yùn)算中,使學(xué)生掌握應(yīng)用有理化分母的方法化簡和計算二次根式;

      2、會求二次根式的.代數(shù)的值;

      3、進(jìn)一步提高學(xué)生的綜合運(yùn)算能力。

      教學(xué)重點(diǎn):在二次根式的混合運(yùn)算中,靈活選擇有理化分母的方法化簡二次根式

      教學(xué)難點(diǎn):正確進(jìn)行二次根式的混合運(yùn)算和求含有二次根式的代數(shù)式的值

      教學(xué)過程:

      一、二次根式的混合運(yùn)算

      例1 計算:

      分析:(1)題是二次根式的加減運(yùn)算,可先把前三個二次根式化最簡二次根式,把第四式的分母有理化,然后再進(jìn)行二次根式的加減運(yùn)算。

      (2)題是含乘方、加、減和除法的混合運(yùn)算,應(yīng)按運(yùn)算的順序進(jìn)行計算,先算括號內(nèi)的式子,最后進(jìn)行除法運(yùn)算。注意的計算。

      練習(xí)1:P206 / 8--① P207 / 1①②

      例2 計算

      問:計算思路是什么?

      答:先把第一人的括號內(nèi)的式子通分,把第二個括號內(nèi)的式子的分母有理化,再進(jìn)行計算。

      二、求代數(shù)式的值。 注意兩點(diǎn):

      (1)如果已知條件為含二次根式的式子,先把它化簡;

      (2)如果代數(shù)式是含二次根式的式子,應(yīng)先把代數(shù)式化簡,再求值。

      例3 已知,求的值。

      分析:多項(xiàng)式可轉(zhuǎn)化為用與表示的式子,因此可根據(jù)已知條件中的及的值。求得與的值。在計算中,先把及的式了有理化分母。可使計算簡便。

      例4 已知,求的值。

      觀察代數(shù)式的特點(diǎn),請說出求這個代數(shù)式的值的思路。

      答:所求的代數(shù)式中,相減的兩個式子的分母都含有二次根式,為化去它們的分母中的根號,可以分別先把各自的分母有理化或進(jìn)行]通分,把這個代數(shù)式化簡后,再求值。

      三、小結(jié)

      1、對于二次根式的混合混合運(yùn)算。應(yīng)根據(jù)二次根式的加、減、乘除和乘方運(yùn)算的順序進(jìn)行,即先進(jìn)行乘方運(yùn)算,再進(jìn)行乘、除運(yùn)算,最后進(jìn)行加、減運(yùn)算。如果有括號,先進(jìn)行括號內(nèi)的式子的運(yùn)算,運(yùn)算結(jié)果要化為最簡二次根式。

      2、在代數(shù)式求值問題中,如果已知條件所求式子中有含二次根式(或分式)的式子,應(yīng)先把它們化簡,然后再求值。

      3、在進(jìn)行二次根式的混合運(yùn)算時,要根據(jù)題目特點(diǎn),靈活選擇解題方法,目的在于使計算更簡捷。

      四、作業(yè)

      P206 / 7 P206 / 8---②③

    二次根式教案 篇4

      教學(xué)目標(biāo)

      課標(biāo)要求:學(xué)生要學(xué)會學(xué)習(xí)、自主學(xué)習(xí),要為學(xué)生終生學(xué)習(xí)打下堅實(shí)的基礎(chǔ),根據(jù)教學(xué)大綱和新課標(biāo)的要求,根據(jù)教材內(nèi)容和學(xué)生的特點(diǎn)我確定了本節(jié)課的教學(xué)目標(biāo) 1、了解二次根式的概念 2、了解二次根式的基本性質(zhì),經(jīng)歷觀察、比較、總結(jié)二次根式的基本性質(zhì)的過程,發(fā)展學(xué)生的歸納概括能力。 3、通過對二次根式的概念和性質(zhì)的探究,提高數(shù)學(xué)探究能力和歸納表達(dá)能力。 4、學(xué)生經(jīng)歷觀察、比較、總結(jié)和應(yīng)用等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,體驗(yàn)發(fā)現(xiàn)的樂趣,并提高應(yīng)用的意識。

      教學(xué)重點(diǎn):二次根式的概念和基本性質(zhì)

      教學(xué)難點(diǎn):二次根式的基本性質(zhì)的靈活運(yùn)用

      教法和學(xué)法

      教學(xué)活動的本質(zhì)是一種合作,一種交流。學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者,本節(jié)課主要采用自主學(xué)習(xí),合作探究,引領(lǐng)提升的方式展開教學(xué)。依據(jù)學(xué)生的年齡特點(diǎn)和已有的知識基礎(chǔ),本節(jié)課注重加強(qiáng)知識間的縱向聯(lián)系,,拓展學(xué)生探索的空間,體現(xiàn)由具體到抽象的認(rèn)識過程。為了為后續(xù)學(xué)習(xí)打下堅實(shí)的基礎(chǔ),例如在“銳角三角函數(shù)”一章中,會遇到很多實(shí)際問題,在解決實(shí)際問題的過程中,要遇到將二次根式化成最簡二次根式等,本課適當(dāng)加強(qiáng)練習(xí),讓學(xué)生養(yǎng)成聯(lián)系和發(fā)展的觀點(diǎn)學(xué)習(xí)數(shù)學(xué)的習(xí)慣。

      教學(xué)過程

      活動一:根據(jù)學(xué)生已有知識探究二次根式的概念 1.探究二次根式概念 由四個實(shí)際問題(三個幾何問題,一個物理問題)入手,設(shè)置問題情境,讓學(xué)生感受到研究二次根式來源于生活又服務(wù)于生活。 思考:用帶有根號的式子填空,看看寫出的結(jié)果有什么特點(diǎn)? (1)要做一個兩條直角邊的長分別為7cm和4cm的三角尺,斜邊的長應(yīng)為 cm

      (2)面積為S的正方形的邊長為

      (3)要修建一個面積為6.28m2的圓形噴水池,它的半徑為m(∏取3.14)

      (4)一個物體從高處自由落下,落到地面所用的時間t(單位:s)與開始落下時的高度h(單位:m)滿足關(guān)系h=5t2.如果用含有h的式子表示t,則t= 學(xué)生發(fā)現(xiàn)所填結(jié)果都表示一個數(shù)的算術(shù)平方根,教師引導(dǎo)學(xué)生用一個式子表示這些有共同特點(diǎn)的式子。學(xué)生表示為,此時教師啟發(fā)學(xué)生回憶已學(xué)平方根的性質(zhì)讓學(xué)生總結(jié)出a這一條件。在此基礎(chǔ)上總結(jié)出二次根式的概念。 2.例題評析 例1:哪些為二次根式? 練習(xí):x取何值時下列各式有意義,通過4小題的訓(xùn)練,讓學(xué)生體會二次根式概念的初步應(yīng)用。加深對二次根式定義的理解,并注重新舊知識間的聯(lián)系,用轉(zhuǎn)化的思想解決問題,總結(jié)出解題規(guī)律:求未知數(shù)的取值范圍即轉(zhuǎn)化為①被開方數(shù)大于等于0②分母不為0列不等式或不等式組解決問題。

      活動二:探究二次根式的性質(zhì)1 1.探究(a)與0的關(guān)系 學(xué)生分類討論探究出:(a)是一個非負(fù)數(shù),此時歸納出二次根式的第一個性質(zhì):雙重非負(fù)性。培養(yǎng)學(xué)生的分類討論和概括能力。例2:,則變式:,

      活動三:探究二次根式的性質(zhì)2 探究()2=a(a)由課本具體的正數(shù)和零入手來研究二次根式的第二個性質(zhì),首先讓學(xué)生通過探究活動感受這條結(jié)論,然后再從算術(shù)平方根的意義出發(fā),結(jié)合具體例子對這條結(jié)論進(jìn)行分析,引導(dǎo)學(xué)生由具體到抽象,得出一般的結(jié)論,并發(fā)現(xiàn)開平方運(yùn)算與平方運(yùn)算的關(guān)系,培養(yǎng)學(xué)生由特殊到一般的思維方式,提高歸納、總結(jié)的能力。前兩題學(xué)生口述教師板書,后面的兩題由學(xué)生板演引導(dǎo)學(xué)生分析(2)(4)實(shí)質(zhì)是積的乘方和分式的乘方 拓展:反之(a)如 為后面的化最簡二次根式(簡單的分母有理化)做好鋪墊。 例4:在實(shí)數(shù)范圍內(nèi)分解因式

      活動四:探究二次根式的性質(zhì)3 3.探究 在活動三的基礎(chǔ)上出示課本第4頁的探究: 引導(dǎo)學(xué)生比較活動三與活動四探究中兩組題目的不同之處,活動三中的題目是對非負(fù)數(shù)先進(jìn)行開平方運(yùn)算,再進(jìn)行平方運(yùn)算;而活動四中的題目正好相反,是先進(jìn)行平方運(yùn)算,再進(jìn)行開平方運(yùn)算。再次由特殊到一般的讓學(xué)生歸納出二次根式的又一個性質(zhì)。培養(yǎng)學(xué)生觀察、對比的能力和意識。 此時引導(dǎo)學(xué)生談一談對()2和的聯(lián)系和區(qū)別 相同點(diǎn):①都有平方和開平方運(yùn)算 ②運(yùn)算結(jié)果都是非負(fù)數(shù) ③僅當(dāng)a時,()2= 不同點(diǎn):①從形式和運(yùn)算順序看:()2先開方后平方,先平方后開方 ②從a的取值范圍看:()2(a),(a為任意數(shù)) ③從運(yùn)算結(jié)果看:()2=a(a),(a為任意數(shù)

    二次根式教案 篇5

      【 學(xué)習(xí)目標(biāo) 】

      1、知識與技能:了解二次根式的概念,能求根號內(nèi)字母范圍,理解二次根式的雙重非負(fù)性,并能應(yīng)用它解決相關(guān)問題。

      2、過程與方法:進(jìn)一步體會分類討論的數(shù)學(xué)思想。

      3、情感、態(tài)度與價值觀:通過小組合作學(xué)習(xí),體驗(yàn)在合作探索中學(xué)習(xí)數(shù)學(xué)的樂趣。

      【 學(xué)習(xí)重難點(diǎn) 】

      1、重點(diǎn):準(zhǔn)確理解二次根式的概念,并能進(jìn)行簡單的計算。

      2、難點(diǎn):準(zhǔn)確理解二次根式的雙重非負(fù)性。

      【 學(xué)習(xí)內(nèi)容 】課本第2— 3頁

      【 學(xué)習(xí)流程 】

      一、 課前準(zhǔn)備(預(yù)習(xí)學(xué)案見附件1)

      學(xué)生在家中認(rèn)真閱讀理解課本中相關(guān)內(nèi)容的知識,并根據(jù)自己的理解完成預(yù)習(xí)學(xué)案。

      二、 課堂教學(xué)

      (一)合作學(xué)習(xí)階段。

      教師出示課堂教學(xué)目標(biāo)及引導(dǎo)材料,各學(xué)習(xí)小組結(jié)合本節(jié)課學(xué)習(xí)目標(biāo),根據(jù)課堂引導(dǎo)材料中得內(nèi)容,以小組合作的形式,組內(nèi)交流、總結(jié),并記錄合作學(xué)習(xí)中碰到的問題。組內(nèi)各成員根據(jù)課堂引導(dǎo)材料的要求在小組合作的前提下認(rèn)真完成課堂引導(dǎo)材料。教師在巡視中觀察各小組合作學(xué)習(xí)的情況,并進(jìn)行及時的引導(dǎo)、點(diǎn)撥,對普遍存在的問題做好記錄。

      (二)集體講授階段。(15分鐘左右)

      1. 各小組推選代表依次對課堂引導(dǎo)材料中的問題進(jìn)行解答,不足的本組成員可以補(bǔ)充。

      2. 教師對合作學(xué)習(xí)中存在的普遍的不能解決的問題進(jìn)行集體講解。

      3. 各小組提出本組學(xué)習(xí)中存在的困惑,并請其他小組幫助解答,解答不了的由教師進(jìn)行解答。

      (三)當(dāng)堂檢測階段

      為了及時了解本節(jié)課學(xué)生的學(xué)習(xí)效果,及對本節(jié)課進(jìn)行及時的鞏固,對學(xué)生進(jìn)行當(dāng)堂檢測,測試完試卷上交。

      (注:合作學(xué)習(xí)階段與集體講授階段可以根據(jù)授課內(nèi)容進(jìn)行適當(dāng)調(diào)整次序或交叉進(jìn)行)

      三、 課后作業(yè)(課后作業(yè)見附件2)

      教師發(fā)放根據(jù)本節(jié)課所學(xué)內(nèi)容制定的針對性作業(yè),以幫助學(xué)生進(jìn)一步鞏固提高課堂所學(xué)。

      四、板書設(shè)計

      課題:二次根式(1)

      二次根式概念 例題 例題

      二次根式性質(zhì)

      反思:

    二次根式教案 篇6

      一、內(nèi)容和內(nèi)容解析

      1.內(nèi)容

      二次根式的概念.

      2.內(nèi)容解析

      本節(jié)課是在學(xué)生學(xué)習(xí)了平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、立方根,知道開方與乘方互為逆運(yùn)算的基礎(chǔ)上,來學(xué)習(xí)二次根式的概念. 它不僅是對前面所學(xué)知識的綜合應(yīng)用,也為后面學(xué)習(xí)二次根式的性質(zhì)和四則運(yùn)算打基礎(chǔ).

      教材先設(shè)置了三個實(shí)際問題,這些問題的結(jié)果都可以表示成二次根式的形式,它們都表示一些正數(shù)的算術(shù)平方根,由此引出二次根式的定義. 再通過例1討論了二次根式中被開方數(shù)字母的取值范圍的問題,加深學(xué)生對二次根式的定義的理解.

      本節(jié)課的教學(xué)重點(diǎn)是:了解二次根式的概念;

      二、目標(biāo)和目標(biāo)解析

      1.教學(xué)目標(biāo)

      (1)體會研究二次根式是實(shí)際的需要.

      (2)了解二次根式的概念.

      2. 教學(xué)目標(biāo)解析

      (1)學(xué)生能用二次根式表示實(shí)際問題中的數(shù)量和數(shù)量關(guān)系,體會研究二次根式的必要性.

      (2)學(xué)生能根據(jù)算術(shù)平方根的意義了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.

      三、教學(xué)問題診斷分析

      對于二次根式的定義,應(yīng)側(cè)重讓學(xué)生理解 “ 的雙重非負(fù)性,”即被開方數(shù) ≥0是非負(fù)數(shù), 的算術(shù)平方根 ≥0也是非負(fù)數(shù).教學(xué)時注意引導(dǎo)學(xué)生回憶在實(shí)數(shù)一章所學(xué)習(xí)的有關(guān)平方根的意義和特征,幫助學(xué)生理解這一要求,從而讓學(xué)生得出二次根式成立的條件,并運(yùn)用被開方數(shù)是非負(fù)數(shù)這一條件進(jìn)行二次根式有意義的判斷.

      本節(jié)課的教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性.

      四、教學(xué)過程設(shè)計

      1.創(chuàng)設(shè)情境,提出問題

      問題1你能用帶有根號的的式子填空嗎?

      (1)面積為3 的正方形的邊長為_______,面積為S 的正方形的邊長為_______.

      (2)一個長方形圍欄,長是寬的2 倍,面積為130?,則它的寬為______.

      (3)一個物體從高處自由落下,落到地面所用的時間 t(單位:s)與開始落下的高度h(單位:)滿足關(guān)系 h =5t?,如果用含有h 的式子表示 t ,則t= _____.

      師生活動:學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價.

      【設(shè)計意圖】讓學(xué)生在填空過程中初步感知二次根式與實(shí)際生活的緊密聯(lián)系,體會研究二次根式的必要性.

      問題2 上面得到的式子 , , 分別表示什么意義?它們有什么共同特征?

      師生活動:教師引導(dǎo)學(xué)生說出各式的意義,概括它們的共同特征:都表示一個非負(fù)數(shù)(包括字母或式子表示的非負(fù)數(shù))的算術(shù)平方根.

      【設(shè)計意圖】為概括二次根式的概念作鋪墊.

      2.抽象概括,形成概念

      問題3 你能用一個式子表示一個非負(fù)數(shù)的算術(shù)平方根嗎?

      師生活動:學(xué)生小組討論,全班交流.教師由此給出二次根式的定義:一般地,我們把形如 (a≥0)的式子叫做二次根式,“ ”稱為二次根號.

      【設(shè)計意圖】讓學(xué)生體會由特殊到一般的過程,培養(yǎng)學(xué)生的概括能力.

      追問:在二次根式的概念中,為什么要強(qiáng)調(diào)“a≥0”?

      師生活動:教師引導(dǎo)學(xué)生討論,知道二次根式被開方數(shù)必須是非負(fù)數(shù)的理由.

      【設(shè)計意圖】進(jìn)一步加深學(xué)生對二次根式被開方數(shù)必須是非負(fù)數(shù)的理解.

      3.辨析概念,應(yīng)用鞏固

      例1 當(dāng) 時怎樣的實(shí)數(shù)時, 在實(shí)數(shù)范圍內(nèi)有意義?

      師生活動:引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,鞏固學(xué)生對二次根式的被開方數(shù)為非負(fù)數(shù)的理解.

      例2 當(dāng) 是怎樣的實(shí)數(shù)時, 在實(shí)數(shù)范圍內(nèi)有意義? 呢?

      師生活動:先讓學(xué)生獨(dú)立思考,再追問.

      【設(shè)計意圖】在辨析中,加深學(xué)生對二次根式被開方數(shù)為非負(fù)數(shù)的理解.

      問題4 你能比較 與0的大小嗎?

      師生活動:通過分 和 這兩種情況的討論,比較 與0的大小,引導(dǎo)學(xué)生得出 ≥0的結(jié)論,強(qiáng)化學(xué)生對二次根式本身為非負(fù)數(shù)的理解,

      【設(shè)計意圖】通過這一活動的設(shè)計,提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識;培養(yǎng)學(xué)生分類討論和歸納概括的能力.

      4.綜合運(yùn)用,鞏固提高

      練習(xí)1 完成教科書第3頁的練習(xí).

      練習(xí)2 當(dāng)x 是什么實(shí)數(shù)時,下列各式有意義.

      (1) ;(2) ;(3) ;(4) .

      【設(shè)計意圖】 辨析二次根式的概念,確定二次根式有意義的條件.

      【設(shè)計意圖】設(shè)計有一定綜合性的題目,考查學(xué)生的靈活運(yùn)用的能力,開闊學(xué)生的視野,訓(xùn)練學(xué)生的思維.

      5.總結(jié)反思

      教師和學(xué)生一起回顧本節(jié)課所學(xué)主要內(nèi)容,并請學(xué)生回答以下問題.

      (1)本節(jié)課你學(xué)到了哪一類新的式子?

      (2)二次根式有意義的條件是什么?二次根式的值的范圍是什么?

      (3)二次根式與算術(shù)平方根有什么關(guān)系?

      師生活動:教師引導(dǎo),學(xué)生小結(jié).

      【設(shè)計意圖】:學(xué)生共同總結(jié),互相取長補(bǔ)短,再一次突出本節(jié)課的學(xué)習(xí)重點(diǎn),掌握解題方法.

      6.布置作業(yè):

      教科書習(xí)題16.1第1,3,5, 7,10題.

      五、目標(biāo)檢測設(shè)計

      1. 下列各式中,一定是二次根式的是( )

      A. B. C. D.

      【設(shè)計意圖】考查對二次根式概念的了解,要特別注意被開方數(shù)為非負(fù)數(shù).

      2. 當(dāng) 時,二次根式 無意義.

      【設(shè)計意圖】考查二次根式無意義的條件,即被開方數(shù)小于0,要注意審題.

      3.當(dāng) 時,二次根式 有最小值,其最小值是 .

      【設(shè)計意圖】本題主要考查二次根式被開方數(shù)是非負(fù)數(shù)的靈活運(yùn)用.

      4.對于 ,小紅根據(jù)被開方數(shù)是非負(fù)數(shù),得 出的取值范圍是 ≥ .小慧認(rèn)為還應(yīng)考慮分母不為0的情況.你認(rèn)為小慧的想法正確嗎?試求出 的取值范圍.

      【設(shè)計意圖】考查二次根式的被開方數(shù)為非負(fù)數(shù)和一個式子的分母不能為0,解題時需要綜合考慮.

    二次根式教案 篇7

      活動1、提出問題

      一個運(yùn)動場要修兩塊長方形草坪,第一塊草坪的長是10米,寬是米,第二塊草坪的長是20米,寬也是米。你能告訴運(yùn)動場的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?

      問題:10+20是什么運(yùn)算?

      活動2、探究活動

      下列3個小題怎樣計算?

      問題:1)-還能繼續(xù)往下合并嗎?

      2)看來二次根式有的能合并,有的不能合并,通過對以上幾個題的觀察,你能說說什么樣的二次根式能合并,什么樣的不能合并嗎?

      二次根式加減時,先將二次根式化簡成最簡二次根式后,再將被開方數(shù)相同的進(jìn)行合并。

      活動3

      練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))

      創(chuàng)設(shè)問題情景,引起學(xué)生思考。

      學(xué)生回答:這個運(yùn)動場要準(zhǔn)備(10+20)平方米的草皮。

      教師提問:學(xué)生思考并回答教師出示課題并說明今天我們就共同來研究該如何進(jìn)行二次根式的加減法運(yùn)算。

      我們可以利用已學(xué)知識或已有經(jīng)驗(yàn)來分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。

      教師引導(dǎo)驗(yàn)證:

      ①設(shè)=,類比合并同類項(xiàng)或面積法;

      ②學(xué)生思考,得出先化簡,再合并的解題思路

      ③先化簡,再合并

      學(xué)生觀察并歸納:二次根式化為最簡二次根式后,被開方數(shù)相同的能合并。

      教師巡視、指導(dǎo),學(xué)生完成、交流,師生評價。

      提醒學(xué)生注意先化簡成最簡二次根式后再判斷。

    二次根式教案 篇8

      目 標(biāo)

      1. 熟練地運(yùn)用二次根式的性質(zhì)化簡二次根式;

      2. 會運(yùn)用二次根式解決簡單的實(shí)際問題;

      3. 進(jìn)一步體驗(yàn)二次根式及其運(yùn)算的實(shí)際意義和應(yīng)用價值。

      教學(xué)設(shè)想

      本節(jié)課的重點(diǎn)是:二次根式及其運(yùn)算的實(shí)際應(yīng)用;難點(diǎn)是:例7涉及多方面的知識和綜合運(yùn)用,思路比較復(fù)雜。

      教 學(xué) 程序 與 策 略

      一、預(yù)習(xí)檢測

      1.解決節(jié)前問題:

      如圖,架在消防車上的云梯AB長為15m,AD:BD=1 :0.6,云梯底部離地面的距離BC為2m。你能求出云梯的頂端離地面的距離AE嗎?

      歸納:

      在日常生活和生產(chǎn)實(shí)際中,我們在解決一 些問題,尤其是涉及直角三角形邊長計算的問題時經(jīng)常用到二次根式及其運(yùn)算。

      二、合作交流:

      1、:如圖,扶梯AB的坡比(BE與AE的長度之比)為1:0.8,滑梯CD的坡比為1:1.6,AE= 米,BC= CD。一男孩從扶梯走到滑梯的頂部,然后從滑梯滑下,他經(jīng)過了多少路程(結(jié)果要求先化簡,再取近似值,精確到0.01米)

      讓學(xué)生有充分的時間閱讀問題,并結(jié)合圖形分析問題:(1)所求的路程實(shí)際上是哪些線段的和?哪些線段的長是已知的?哪些線段的長是未知的?它們之間有什么關(guān)系?(2)列出的算式中有哪些運(yùn)算?能化簡嗎?

      注意解題格式

      教 學(xué) 程 序 與 策 略

      三、鞏固練習(xí):

      完成課本P17、1,組長檢查反饋;

      四、拓展提高:

      1:如圖是一張等腰三角形彩色紙,AC=BC=40cm,將斜邊上的高CD四等分,然后裁出3張寬度相等的長方形紙條。(1)分別求出3張長方形紙條的長度。(2)若用這些紙條為一幅正方形美術(shù)作品鑲邊(紙條不重疊),如右圖,正方形美術(shù)作品的面積最大不能超過多少cm。

      師生共同分析解題思路,請學(xué)生寫出解題過程。

      五、課堂小結(jié):

      1.談一談:本節(jié)課你有什么收獲?

      2.運(yùn)用二次根式解決簡單的實(shí)際問題時應(yīng)注意的的問題

      六、堂堂清

      1: 作業(yè)本(2)

      2:課本P17頁:第4、5題選做。

    二次根式教案 篇9

      教學(xué)目標(biāo)

      1.使學(xué)生進(jìn)一步理解二次根式的意義及基本性質(zhì),并能熟練 地化簡含二次根式的式子;

      2.熟練地進(jìn)行二次根式的加、減、乘、除混合運(yùn)算.

      教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):含二次根式的式子的混合運(yùn)算.

      難點(diǎn):綜合運(yùn)用二次根式的 性質(zhì)及運(yùn)算法則化簡和計算含二次根式的式子.

      教學(xué)過程設(shè)計

      一、復(fù)習(xí)

      1.請同學(xué)回憶二次根式有哪些基本性質(zhì)?用式子表示出來,并說明各 式成立的條件.

      指出:二次根式的這些基本性質(zhì)都是在一定條件 下才成立的,主要應(yīng)用于化簡二次根式.

      2.二次根式 的乘法及除法的法則是什么?用式子表示出來.

      指出:二次根式的乘、除法則也是在一定條件下成立的.把兩個二次根式相除,

      計算結(jié)果要把分母有理化.

      3.在二次根式的化簡或計算中,還常用到以下兩個二次根式的關(guān)系式:

      4.在含有二次根式的式子的化簡及求值等問題中,常運(yùn)用三個可逆的式子:

      二、例題

      例1 x取什么值時,下列各式在實(shí)數(shù)范圍內(nèi)有意義:

      分析:

      (1)題是兩個二次根式的和,x的取值必須使兩個二次根式都有意義;

      (3)題是兩個二次根式的和, x的取值必須使兩個二次根式都有意義;

      (4)題的分子是二次根式,分母是含x的單項(xiàng)式,因此x的取值必須使二次根式有意義,同時使分母的值不等于零.

      x-2且x0.

      解因?yàn)閚2-90, 9-n20,且n-30,所以n2=9且n3,所以

      例3

      分析:第一個二次根式的被開方數(shù)的分子與分母都可以分解因式.把它們分別分解因式后,再利用二次根式的基本性質(zhì)把式子化簡,化簡中應(yīng)注意利用題中的隱含條件3 -a0和1-a>0.

      解 因?yàn)?-a>0,3-a0,所以

      a<1,|a-2|=2-a.

      (a-1)(a-3)=[-(1-a)][-(3-a)]=(1-a)(3-a)0.

      這些性質(zhì)化簡含二次根式的式子時,要注意上述條件,并要闡述清楚是怎樣滿足這些條件的.

      問:上面的代數(shù)式中的兩個二次根式的被開方數(shù)的式子如何化為完全平方式?

      分析:先把第二個式子化簡,再把兩個式子進(jìn)行通分,然后進(jìn)行計算.

      注意:

      所以在化簡過程中,

      例6

      分析:如果把兩個式子通分,或把每一個式子的分母有理化再進(jìn)行計算,這兩種方法的運(yùn)算量都較大,根據(jù)式子的結(jié)構(gòu)特點(diǎn),分別把兩個式子的分母看作一個整體,用換元法把式子變形,就可以使運(yùn)算變?yōu)楹喗荩?/p>

      a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),

      三、課堂練習(xí)

      1.選擇題:

      A.a(chǎn)2B.a(chǎn)2

      C.a(chǎn)2D.a(chǎn)<2

      A .x+2 B.-x-2

      C.-x+2D.x-2

      A.2x B.2a

      C.-2x D.-2a

      2.填空題:

      4.計算:

      四、小結(jié)

      1.本節(jié)課復(fù)習(xí)的五個基本問題是“二次根式”這一章的主要基礎(chǔ)知識,同學(xué)們要深刻理解并牢固掌握.

      2.在一次根式的化簡、計算及求值的過程中,應(yīng)注意利用題中的使二次根式有意義的條件(或題中的隱含條件),即被開方數(shù)為非負(fù)數(shù),以確定被開方數(shù)中的字母或式子的取值范圍.

      3.運(yùn)用二次根式的四個基本性質(zhì)進(jìn)行二次根式的運(yùn)算時,一定要注意論述每一個性質(zhì)中字母的取值范圍的條件.

      4.通過例題的討論,要學(xué)會綜合、靈活運(yùn)用二次根式的意義、基本性質(zhì)和法則以及有關(guān)多項(xiàng)式的因式分解,解答有關(guān)含二次根式的式子的化簡、計算及求值等問題.

      五、作業(yè)

      1.x是什么值時,下列各式在實(shí)數(shù)范圍內(nèi)有意義?

      2.把下列各式化成最簡二次根式:

    【二次根式教案】相關(guān)文章:

    二次根式的教案10-19

    《二次根式的運(yùn)算》的教案06-20

    關(guān)于二次根式教案08-27

    《二次根式的運(yùn)算》的教案09-07

    【精選】二次根式教案3篇08-13

    二次根式教案4篇07-21

    【精選】二次根式教案4篇07-02

    二次根式教案九篇02-06

    【精華】二次根式教案3篇10-26

    最簡二次根式教案范文06-25

    国内熟妇人妻色无码视频在线| 国产精品无码久久久久| 亚洲综合另类欧美久久久久精品| 亚洲高清日本一区二区三区| 国产69久久精品成人看| 亚洲精品美女久久7777777| 欧美最猛性ⅩXXXX免费的| 国产亚洲无线码一区二区| gogogo免费视频观看 高清国语| 狠狠色噜噜狠狠狠狠狠色综合久久|