- 相關(guān)推薦
【薦】八年級數(shù)學教案
作為一名無私奉獻的老師,往往需要進行教案編寫工作,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。如何把教案做到重點突出呢?下面是小編為大家整理的八年級數(shù)學教案,僅供參考,大家一起來看看吧。
八年級數(shù)學教案1
一、學習目標及重、難點:
1、了解方差的定義和計算公式。
2、理解方差概念的產(chǎn)生和形成的過程。
3、會用方差計算公式來比較兩組數(shù)據(jù)的波動大小。
重點:方差產(chǎn)生的必要性和應用方差公式解決實際問題。
難點:理解方差公式
二、自主學習:
(一)知識我先懂:
方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用
來表示。
給力小貼士:方差越小說明這組數(shù)據(jù)越 。波動性越 。
(二)自主檢測小練習:
1、已知一組數(shù)據(jù)為2、0、-1、3、-4,則這組數(shù)據(jù)的方差為 。
2、甲、乙兩組數(shù)據(jù)如下:
甲組:10 9 11 8 12 13 10 7;
乙組:7 8 9 10 11 12 11 12.
分別計算出這兩組數(shù)據(jù)的極差和方差,并說明哪一組數(shù)據(jù)波動較小.
三、新課講解:
引例:問題: 從甲、乙兩種農(nóng)作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)
甲:9、10、 10、13、7、13、10、8、11、8;
乙:8、13、12、11、10、12、7、7、10、10;
問:(1)哪種農(nóng)作物的苗長的比較高(我們可以計算它們的平均數(shù): = )
(2)哪種農(nóng)作物的苗長得比較整齊?(我們可以計算它們的極差,你發(fā)現(xiàn)了 )
歸納: 方差:設(shè)有n個數(shù)據(jù) ,各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是
我們用它們的平均數(shù),表示這組數(shù)據(jù)的方差:即用 來表示。
(一)例題講解:
例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績?nèi)缦卤硭荆l的成績比較穩(wěn)定?為什么?、
測試次數(shù) 第1次 第2次 第3次 第4次 第5次
段巍 13 14 13 12 13
金志強 10 13 16 14 12
給力提示:先求平均數(shù),在利用公式求解方差。
(二)小試身手
1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環(huán)數(shù)如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7
經(jīng)過計算,兩人射擊環(huán)數(shù)的平均數(shù)是 ,但S = ,S = ,則S S ,所以確定
去參加比賽。
1、求下列數(shù)據(jù)的眾數(shù):
(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2
2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數(shù),中位數(shù),眾數(shù)分別是多少?
四、課堂小結(jié)
方差公式:
給力提示:方差越小說明這組數(shù)據(jù)越 。波動性越 。
每課一首詩:求方差,有公式;先平均,再求差;
求平方,再平均;所得數(shù),是方差。
五、課堂檢測:
1、小爽和小兵在10次百米跑步練習中成績?nèi)绫硭荆?單位:秒)
小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9
小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8
如果根據(jù)這幾次成績選拔一人參加比賽,你會選誰呢?
六、課后作業(yè):必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題
七、學習小札記:
寫下你的收獲,交流你的經(jīng)驗,分享你的成果,你會感到無比的快樂!
八年級數(shù)學教案2
一、學習目標:
1、使學生會用完全平方公式分解因式、
2、使學生學習多步驟,多方法的分解因式
二、重點難點:
重點: 讓學生掌握多步驟、多方法分解因式方法
難點: 讓學生學會觀察多項式特點,恰當安排步驟,恰當?shù)剡x用不同方法分解因式
三、合作學習
創(chuàng)設(shè)問題情境,引入新課完全平方公式
(a±b)2=a2±2ab+b2
講授新課
1、推導用完全平方公式分解因式的公式以及公式的特點、
將完全平方公式倒寫:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2、
凡具備這些特點的三項式,就是一個二項式的完全平方,將它寫成平方形式,便實現(xiàn)了因式分解用語言敘述為:兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式、由分解因式與整式乘法的關(guān)系可以看出,如果把乘法公式反過來,那么就可以用來把某些多項式分解因式,這種分解因式的方法叫做運用公式法。
練一練、下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精講精練
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9、
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy、
課堂練習:教科書練習
補充練習:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
五、小結(jié):兩個數(shù)的平方和,加上(或減去)這兩數(shù)的積的2倍,等于這兩個數(shù)的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子稱為完全平方式、
六、作業(yè):
1、分解因式:
X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2
45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4
八年級數(shù)學教案3
創(chuàng)設(shè)情境
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
探究歸納
平行四邊形的判定方法:
證明:兩組對邊分別相等的四邊形是平行四邊形
已知:
求證:
做一做:將四根細木條(其中兩條長相等,另外兩條長也相等)用小釘子釘在一起,做成一個四邊形,使等長的木條成為對邊。它是平行四邊形嗎?
學生交流:把你做的四邊形和其他同學做的進行比較,看看是否都是平行四邊形。
觀察發(fā)現(xiàn):盡管每個人取的邊長不一樣,但只要對邊分別相等,所作的都是平行四邊形
練習:如圖,在ABCD中,E,F(xiàn),G和H分別是各邊中點.求證:四邊形EFGH為平行四邊形
八年級數(shù)學教案4
一、課堂導入
回顧平行四邊的性質(zhì)定理及定義
1.什么叫平行四邊形?平行四邊形有什么性質(zhì)?
2.將以上的性質(zhì)定理,分別用命題形式敘述出來。(如果……那么……)
根據(jù)平行四邊形的定義,我們研究了平行四邊形的其它性質(zhì),那么如何來判定一個四邊形是平行四邊形呢?除了定義還有什么方法?平行四邊形性質(zhì)定理的逆命題是否成立?
二、新課講解
平行四邊形的判定:
(定義法):兩組對邊分別平行的四邊形的平邊形。
幾何語言表達定義法:
∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形
解析:一個四邊形只要其兩組對邊分別互相平行,則可判定這個四邊形是一個平行四邊形。
活動:用做好的紙條拼成一個四邊形,其中強調(diào)兩組對邊分別相等。
(平行四邊形判定定理):
(一)兩組對邊分別相等的四邊形是平行四邊形。
設(shè)問:這個命題的前提和結(jié)論是什么?
已知:四邊形ABCD中,AB=CD,BC=DA。
求證:四邊ABCD是平行四邊形。
分析:判定平行四邊形的依據(jù)目前只有定義,也就是須證明兩組對邊分別平行,當然是借助第三條直線證明角等。連結(jié)BD。易證三角形全等。
板書證明過程。
小結(jié):用幾何語言表達用定義法和剛才證明為正確的方法證明一個四邊形是平行四邊形的方法為:
平行四邊形判定定理1:二組對邊分別相等的四邊形是平行四邊形∵AB=CD,AD=BC,∴四邊形ABCD是平行四邊形
(二)設(shè)問:若一個四邊形有一組對邊平行且相等,能否判定這個四邊形也是平行四邊形呢?
活動:課本探究內(nèi)容,并用事準備好的紙條(紙條的長度相等),先將紙條放置不平行位置,讓學生設(shè)想若二紙條的端點為四邊形的頂點,則組成的四邊形是不是平行四邊形?若將紙條擺放為平行的位置,則同樣用二紙條的端點為頂點組成的四邊形是不是平行四邊形?
設(shè)問:我們能否用推理的方法證明這個命題是正確的呢?(讓學生找出題設(shè)、結(jié)論,然后寫出已知、求證及證明過程。)
八年級數(shù)學教案5
一、教學目標
1、認識中位數(shù)和眾數(shù),并會求出一組數(shù)據(jù)中的眾數(shù)和中位數(shù)。
2、理解中位數(shù)和眾數(shù)的意義和作用。它們也是數(shù)據(jù)代表,可以反映一定的數(shù)據(jù)信息,幫助人們在實際問題中分析并做出決策。
3、會利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
二、重點、難點和難點的突破方法:
1、重點:認識中位數(shù)、眾數(shù)這兩種數(shù)據(jù)代表
2、難點:利用中位數(shù)、眾數(shù)分析數(shù)據(jù)信息做出決策。
3、難點的突破方法:
首先應交待清楚中位數(shù)和眾數(shù)意義和作用:
中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給的數(shù)據(jù)中,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢。眾數(shù)是當一組數(shù)據(jù)中某一重復出現(xiàn)次數(shù)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少不受極端值的影響。
教學過程中注重雙基,一定要使學生能夠很好的掌握中位數(shù)和眾數(shù)的求法,求中位數(shù)的步驟:⑴將數(shù)據(jù)由小到大(或由大到小)排列,⑵數(shù)清數(shù)據(jù)個數(shù)是奇數(shù)還是偶數(shù),如果數(shù)據(jù)個數(shù)為奇數(shù)則取中間的數(shù),如果數(shù)據(jù)個數(shù)為偶數(shù),則取中間位置兩數(shù)的平均值作為中位數(shù)。求眾數(shù)的方法:找出頻數(shù)最多的.那個數(shù)據(jù),若幾個數(shù)據(jù)頻數(shù)都是最多且相同,此時眾數(shù)就是這多個數(shù)據(jù)。
在利用中位數(shù)、眾數(shù)分析實際問題時,應根據(jù)具體情況,課堂上教師應多舉實例,使同學在分析不同實例中有所體會。
三、例習題的意圖分析
1、教材P143的例4的意圖
(1)、這個問題的研究對象是一個樣本,主要是反映了統(tǒng)計學中常用到一種解決問題的方法:對于數(shù)據(jù)較多的研究對象,我們可以考察總體中的一個樣本,然后由樣本的研究結(jié)論去估計總體的情況。
(2)、這個例題另一個意圖是交待了當數(shù)據(jù)個數(shù)為偶數(shù)時,中位數(shù)的求法和解題步驟。(因為在前面有介紹中位數(shù)求法,這里不再重述)
(3)、問題2顯然反映學習中位數(shù)的意義:它可以估計一個數(shù)據(jù)占總體的相對位置,說明中位數(shù)是統(tǒng)計學中的一個重要的數(shù)據(jù)代表。
(4)、這個例題再一次體現(xiàn)了統(tǒng)計學知識與實際生活是緊密聯(lián)系的,所以應鼓勵學生學好這部分知識。
2、教材P145例5的意圖
(1)、通過例5應使學生明白通常對待銷售問題我們要研究的是眾數(shù),它代表該型號的產(chǎn)品銷售,以便給商家合理的建議。
(2)、例5也交待了眾數(shù)的求法和解題步驟(由于求法在前面已介紹,這里不再重述)
(3)、例5也反映了眾數(shù)是數(shù)據(jù)代表的一種。
四、課堂引入
嚴格的講教材本節(jié)課沒有引入的問題,而是在復習和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學們研究過了平均數(shù)的這個數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔當了重要的角色,今天我們來共同研究和認識數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們在分析數(shù)據(jù)過程中又起到怎樣的作用。
五、例習題的分析
教材P144例4,從所給的數(shù)據(jù)可以看到并沒有按照從小到大(或從大到小)的順序排列。因此,首先應將數(shù)據(jù)重新排列,通過觀察會發(fā)現(xiàn)共有12個數(shù)據(jù),偶數(shù)個可以取中間的兩個數(shù)據(jù)146、148,求其平均值,便可得這組數(shù)據(jù)的中位數(shù)。
教材P145例5,由表中第二行可以查到23.5號鞋的頻數(shù),因此這組數(shù)據(jù)的眾數(shù)可以得到,所提的建議應圍繞利于商家獲得較大利潤提出。
六、隨堂練習
1某公司銷售部有營銷人員15人,銷售部為了制定某種商品的銷售金額,統(tǒng)計了這15個人的銷售量如下(單位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求這15個銷售員該月銷量的中位數(shù)和眾數(shù)。
假設(shè)銷售部負責人把每位營銷員的月銷售定額定為320件,你認為合理嗎?如果不合理,請你制定一個合理的銷售定額并說明理由。
2、某商店3、4月份出售某一品牌各種規(guī)格的空調(diào),銷售臺數(shù)如表所示:
1匹1.2匹1.5匹2匹
3月12臺20臺8臺4臺
4月16臺30臺14臺8臺
根據(jù)表格回答問題:
商店出售的各種規(guī)格空調(diào)中,眾數(shù)是多少?
假如你是經(jīng)理,現(xiàn)要進貨,6月份在有限的資金下進貨單位將如何決定?
答案:1. (1)210件、210件(2)不合理。因為15人中有13人的銷售額達不到320件(320雖是原始數(shù)據(jù)的平均數(shù),卻不能反映營銷人員的一般水平),銷售額定為210件合適,因為它既是中位數(shù)又是眾數(shù),是大部分人能達到的額定。
2. (1)1.2匹(2)通過觀察可知1.2匹的銷售,所以要多進1.2匹,由于資金有限就要少進2匹空調(diào)。
七、課后練習
1.數(shù)據(jù)8、9、9、8、10、8、99、8、10、7、9、9、8的中位數(shù)是,眾數(shù)是
2.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
3.數(shù)據(jù)92、96、98、100、X的眾數(shù)是96,則其中位數(shù)和平均數(shù)分別是( )
A.97、96 B.96、96.4 C.96、97 D.98、97
4.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
5.隨機抽取我市一年(按365天計)中的30天平均氣溫狀況如下表:
溫度(℃) -8 -1 7 15 21 24 30
天數(shù)3 5 5 7 6 2 2
請你根據(jù)上述數(shù)據(jù)回答問題:
(1).該組數(shù)據(jù)的中位數(shù)是什么?
(2).若當氣溫在18℃~25℃為市民“滿意溫度”,則我市一年中達到市民“滿意溫度”的大約有多少天?
答案:1. 9;2. 22; 3.B;4.C; 5.(1)15. (2)約97天
八年級數(shù)學教案6
一、教學目標:
1、加深對加權(quán)平均數(shù)的理解
2、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實際問題
3、會用計算器求加權(quán)平均數(shù)的值
二、重點、難點和難點的突破方法:
1、重點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點:根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
3、難點的突破方法:
首先應先復習組中值的定義,在七年級下教材P72中已經(jīng)介紹過組中值定義。因為在根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復習組中值定義。
應給學生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的好處是簡化了計算量。
為了更好的理解這種近似計算的方法和合理性,可以讓學生去讀統(tǒng)計表,體會表格的實際意義。
三、例習題的意圖分析
1、教材P140探究欄目的意圖。
(1)、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計算方法。
(2)、加深了對“權(quán)”意義的理解:當利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個探究欄目也可以幫助學生去回憶、復習七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
2、教材P140的思考的意圖。
(1)、使學生通過思考這兩個問題過程中體會利用統(tǒng)計知識可以解決生活中的許多實際問題
(2)、幫助學生理解表中所表達出來的信息,培養(yǎng)學生分析數(shù)據(jù)的能力。
3、P141利用計算器計算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細介紹計算器使用方法產(chǎn)生明顯對比。一則由于學校中學生使用計算器不同,其操作過程有差別亦不同,再者,各種計算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計算器。所以本節(jié)課的重點內(nèi)容不是利用計算器求加權(quán)平均數(shù),但是掌握其使用方法確實可以運算變得簡單。統(tǒng)計中一些數(shù)據(jù)較大、較多的計算也變得容易些了。
四、課堂引入
采用教材原有的引入問題,設(shè)計的幾個問題如下:
(1)、請同學讀P140探究問題,依據(jù)統(tǒng)計表可以讀出哪些信息
(2)、這里的組中值指什么,它是怎樣確定的?
(3)、第二組數(shù)據(jù)的頻數(shù)5指什么呢?
(4)、如果每組數(shù)據(jù)在本組中分布較為均勻,比組數(shù)據(jù)的平均值和組中值有什么關(guān)系。
五、隨堂練習
1、某校為了了解學生作課外作業(yè)所用時間的情況,對學生作課外作業(yè)所用時間進行調(diào)查,下表是該校初二某班50名學生某一天做數(shù)學課外作業(yè)所用時間的情況統(tǒng)計表
所用時間t(分鐘)人數(shù)
0 0<≤ 6 20 30 40 50 (1)、第二組數(shù)據(jù)的組中值是多少? (2)、求該班學生平均每天做數(shù)學作業(yè)所用時間 2、某班40名學生身高情況如下圖, 請計算該班學生平均身高 答案1.(1).15. (2)28. 2. 165 六、課后練習: 1、某公司有15名員工,他們所在的部門及相應每人所創(chuàng)的年利潤如下表 部門A B C D E F G 人數(shù)1 1 2 4 2 2 5 每人創(chuàng)得利潤20 5 2.5 2 1.5 1.5 1.2 該公司每人所創(chuàng)年利潤的平均數(shù)是多少萬元? 2、下表是截至到20xx年費爾茲獎得主獲獎時的年齡,根據(jù)表格中的信息計算獲費爾茲獎得主獲獎時的平均年齡? 年齡頻數(shù) 28≤X<30 4 30≤X<32 3 32≤X<34 8 34≤X<36 7 36≤X<38 9 38≤X<40 11 40≤X<42 2 3、為調(diào)查居民生活環(huán)境質(zhì)量,環(huán)保局對所轄的50個居民區(qū)進行了噪音(單位:分貝)水平的調(diào)查,結(jié)果如下圖,求每個小區(qū)噪音的平均分貝數(shù)。 答案:1.約2.95萬元2.約29歲3.60.54分貝 一、內(nèi)容和內(nèi)容解析 1.內(nèi)容 三角形高線、中線及角平分線的概念、幾何語言表達及它們的畫法. 2.內(nèi)容解析 本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學生動手操作及解決問題的能力;鼓勵學生主動參與,體驗幾何知識在現(xiàn)實生活中的真實性,激發(fā)學生熱愛生活、勇于探索的思想感情。 理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學生在幾何學習上的一個深入.學習了這一課,對于學生增長幾何知識,運用幾何知識解決生活中的有關(guān)問題,起著十分重要的作用.它也是學習三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個準備. 本節(jié)的重點是了解三角形的高、中線及角平分線概念的同時還要掌握它們的畫法,難點是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系. 二、目標和目標解析 1.教學目標 (1)理解三角形的高、中線與角平分線等概念; (2)會用工具畫三角形的高、中線與角平分線; 2.教學目標解析 (1)經(jīng)歷畫圖實踐過程,理解三角形的高、中線與角平分線等概念. (2)能夠熟練用幾何語言表達三角形的高、中線與角平分線的性質(zhì). (3)掌握三角形的高、中線與角平分線的畫法. (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點. 三、教學問題診斷分析 三角形的高線的理解:三角形的高是線段,不是直線,它的一個端點是三角形的頂點,另一個端點在這個頂點的對邊或?qū)吽诘闹本上. 三角形的中線的理解:三角形的中線也是線段,它是一個頂點和對邊中點的連線,它的一個端點是三角形的頂點,另一個端點是這個頂點的對邊中點. 三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點是一個端點,另一個端點在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別. 一、教材分析 1、特點與地位:重點中的重點。 本課是教材求兩結(jié)點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網(wǎng)絡等方面具有一定的實用意義。 2、重點與難點:結(jié)合學生現(xiàn)有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下: (1)重點:如何將現(xiàn)實問題抽象成求解最短路徑問題,以及該問題的解決方案。 (2)難點:求解最短路徑算法的程序?qū)崿F(xiàn)。 3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結(jié)點的最短路徑,另一種是求每一對結(jié)點之間的最短路徑。根據(jù)教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結(jié)合,逐步推動教學過程。 二、教學目標分析 1、知識目標:掌握最短路徑概念、能夠求解最短路徑。 2、能力目標: (1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學生的數(shù)據(jù)抽象能力。 (2)通過旅游景點線路選擇問題的解決,培養(yǎng)學生的獨立思考、分析問題、解決問題的能力。 3、素質(zhì)目標:培養(yǎng)學生講究工作方法、與他人合作,提高效率。 三、教法分析 課前充分準備,研讀教材,查閱相關(guān)資料,制作多媒體課件。教學過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發(fā)的方式展開教學。由于本節(jié)課的內(nèi)容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據(jù)學生的反應控制好教學進度是本節(jié)課成功的關(guān)鍵。 四、學法指導 1、課前上次課結(jié)課時給學生布置任務,使其有針對性的預習。 2、課中指導學生討論任務解決方法,引導學生分析本節(jié)課知識點。 3、課后給學生布置同類型任務,加強練習。 五、教學過程分析 (一)課前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。 教學方法及注意事項: (1)采用提問方式,注意及時小結(jié),提問的目的是幫助學生回憶概念。 (2)提示學生“溫故而知新”,養(yǎng)成良好的學習習慣。 (二)導入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個點間最短距離的實際需要,引出本課教學內(nèi)容“求最短路徑問題”。教學方法及注意事項: (1)先講實例,再指出概念,既可以吸引學生注意力,激發(fā)學習興趣,又可以實現(xiàn)教學內(nèi)容的自然過渡。 (2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。 (三)講授新課(25~30分鐘) 1、求某一結(jié)點到其他各結(jié)點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。 (1)將實際問題抽象成圖中求任一結(jié)點到其他結(jié)點最短路徑問題。(3~5分鐘)教學方法及注意事項: ①主要采用講授法,將實際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。 ②注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉(zhuǎn)化。 ③及時總結(jié),原型抽象(景點作為圖的結(jié)點,景點間的線路作為圖的邊,旅途費用作為邊的權(quán)值),將案例求解問題抽象成求圖中某一結(jié)點到其他各結(jié)點的最短路徑問題。 ④利用多媒體課件,向?qū)W生展示一張帶權(quán)有向圖,并略作解釋,為后續(xù)教學做準備。 教學方法及注意事項: ①啟發(fā)式教學,如何實現(xiàn)按路徑長度遞增產(chǎn)生最短路徑? ②結(jié)合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。 (四)課堂小結(jié)(3~5分鐘) 1、明確本節(jié)課重點 2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢? (五)布置作業(yè) 1、書面作業(yè):復習本次課內(nèi)容,準備一道備用習題,靈活把握時間安排。 六、教學特色 以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現(xiàn)所講內(nèi)容的實用性,提高學生的學習興趣。 分式方程 教學目標 1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用. 2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學生分析問題、解決問題的能力,滲透數(shù)學的轉(zhuǎn)化思想人體,培養(yǎng)學生的應用意識。 3.在活動中培養(yǎng)學生樂于探究、合作學習的習慣,培養(yǎng)學 生努力尋找 解決問題的進取心,體會數(shù)學的應用價值. 教學重點: 將實際問題中的等量 關(guān)系用分式方程表示 教學難點: 找實際問題中的等量關(guān)系 教學過程: 情境導入: 有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流) 如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。 根據(jù)題意,可得方程___________________ 二、講授新課 從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。 這 一問題中有哪些等量關(guān)系? 如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。 根據(jù)題意,可得方程_ _____________________。 學生分組探討、交流,列出方程. 三.做一做: 為了幫助遭受自然災害的地區(qū)重建家園,某學校號召同學們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程? 四.議一議: 上面所得到的方程有什么共同特點? 分母中含有未知數(shù)的方程叫做分式方程 分式方程與整式方程有什么區(qū)別? 五、 隨堂練習 (1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程? (2)輪船在順水中航行20千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度 (3)根據(jù)分式方程 編一道應用題,然后同組交流,看誰編得好 六、學 習小結(jié) 本節(jié)課你學到了哪些知識?有什么感想? 七.作業(yè)布置 學習重點:函數(shù)的概念 及確定自變量的取值范圍。 學習難點:認識函數(shù),領(lǐng)會函數(shù)的意義。 【自主復習知識準備】 請你舉出生活中含有兩個變量的變化過程,說明其中的常量和變量。 【自主探究知識應用】 請看書72——74頁內(nèi)容,完成下列問題: 1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。 2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的關(guān)系。 3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。 歸納:一般的,在一個變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應,那么我們就說x是__________,y是x的________。如果當x=a時,y=b,那么b叫做當自變量的值為a時的函數(shù)值。 補充小結(jié): (1)函數(shù)的定義: (2)必須是一個變化過程; (3)兩個變量;其中一個變量每取一個值 ,另一個變量有且有唯一值對它對應。 三、鞏固與拓展: 例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。 (1)寫出表示y與x的函數(shù)關(guān)系式. (2)指出自變量x的取值范圍. (3) 汽車行駛200千米時,油箱中還有多少汽油? 【當堂檢測知識升華】 1、判斷下列變量之間是不是函數(shù)關(guān)系: (1)長方形的寬一定時,其長與面積; (2)等腰三角形的底邊長與面積; (3)某人的年齡與身高; 2、寫出下列函數(shù)的解析式. (1)一個長方體盒子高3cm,底面是正方形,這個長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子. (2)汽車加油時,加油槍的流量為10L/min. ①如果加油前,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min)之間的函數(shù)關(guān)系; ②如果加油時,油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時間x(min) 之間的函數(shù)關(guān)系. (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時,應繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實得的本息和y(元)與所存月數(shù)x之間的關(guān)系式. (4)如圖,每個圖中是由若干個盆花組成的圖案,每條邊(包括兩個頂點)有n盆花,每個圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式. 八年級變量與函數(shù)(2)數(shù)學教案的全部內(nèi)容由數(shù)學網(wǎng)提供,教材中的每一個問題,每一個環(huán)節(jié),都有教師依據(jù)學生學習的實際和教材的實際進行有針對性的設(shè)置,希望大家喜歡! 一、素質(zhì)教育目標 (一)知識教學點 1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應用. 2.使學生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系. 3.會根據(jù)簡單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個定理. (二)能力訓練點 1.通過“探索式試明法”開拓學生思路,發(fā)展學生思維能力. 2.通過教學,使學生逐步學會分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進一步提高學生分析問題,解決問題的能力. (三)德育滲透點 通過一題多解激發(fā)學生的學習興趣. (四)美育滲透點 通過學習,體會幾何證明的方法美. 二、學法引導 構(gòu)造逆命題,分析探索證明,啟發(fā)講解. 三、重點·難點·疑點及解決辦法 1.教學重點:平行四邊形的判定定理1、2、3的應用. 2.教學難點:綜合應用判定定理和性質(zhì)定理. 3.疑點及解決辦法:在綜合應用判定定理及性質(zhì)定理時,在什么條件下用判定定理,在什么條件下用性質(zhì)定理 (強調(diào)在求證平行四邊形時用判定定理在已知平行四邊形時用性質(zhì)定理). 一、教學目標 1.使學生理解并掌握分式的概念,了解有理式的概念; 2.使學生能夠求出分式有意義的條件; 3.通過類比分數(shù)研究分式的教學,培養(yǎng)學生運用類比轉(zhuǎn)化的思想方法解決問題的能力; 4.通過類比方法的教學,培養(yǎng)學生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點的再認識. 二、重點、難點、疑點及解決辦法 1.教學重點和難點 明確分式的分母不為零. 2.疑點及解決辦法 通過類比分數(shù)的意義,加強對分式意義的理解. 三、教學過程 【新課引入】 前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數(shù)的經(jīng)驗,可猜想到分式) 【新課】 1.分式的定義 (1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結(jié)論: 用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母. (2)由學生舉幾個分式的例子. (3)學生小結(jié)分式的概念中應注意的問題. ①分母中含有字母. ②如同分數(shù)一樣,分式的分母不能為零. (4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論] 2.有理式的分類 請學生類比有理數(shù)的分類為有理式分類: 例1 當取何值時,下列分式有意義? (1); 解:由分母得. ∴當時,原分式有意義. (2); 解:由分母得. ∴當時,原分式有意義. (3); 解:∵恒成立, ∴取一切實數(shù)時,原分式都有意義. (4). 解:由分母得. ∴當且時,原分式有意義. 思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做? 例2 當取何值時,下列分式的值為零? (1); 解:由分子得. 而當時,分母. ∴當時,原分式值為零. 小結(jié):若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零. (2); 解:由分子得. 而當時,分母,分式無意義. 當時,分母. ∴當時,原分式值為零. (3); 解:由分子得. 而當時,分母. 當時,分母. ∴當或時,原分式值都為零. (4). 解:由分子得. 而當時,,分式無意義. ∴沒有使原分式的值為零的的值,即原分式值不可能為零. (四)總結(jié)、擴展 1.分式與分數(shù)的區(qū)別. 2.分式何時有意義? 3.分式何時值為零? (五)隨堂練習 1.填空題: (1)當時,分式的值為零 (2)當時,分式的值為零 (3)當時,分式的值為零 2.教材P55中1、2、3. 八、布置作業(yè) 教材P56中A組3、4;B組(1)、(2)、(3). 九、板書設(shè)計 課題 例1 1.定義例2 2.有理式分類 菱形 學習目標(學習重點): 1.經(jīng)歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習慣; 2.運用菱形的識別方法進行有關(guān)推理. 補充例題: 例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB于E,DF∥AB交AC于F.四邊形AEDF是菱形嗎?說明你的理由. 例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交于E、F. 四邊形AFCE是菱形嗎?說明理由. 例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設(shè)F、H分別是B、D落在AC上的兩點,E、G分別是折痕CE、AG與AB、CD的交點 (1)試說明四邊形AECG是平行四邊形; (2)若AB=4cm,BC=3cm,求線段EF的長; (3)當矩形兩邊AB、BC具備怎樣的關(guān)系時,四邊形AECG是菱形. 課后續(xù)助: 一、填空題 1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形 2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點, 且DE∥BA,DF∥ CA (1)要使四邊形AFDE是菱形,則要增加條件______________________ (2)要使四邊形AFDE是矩形,則要增加條件______________________ 二、解答題 1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?并說明理由。 2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交于點O,OA=4,OB=3,AB=5. (1) AC,BD互相垂直嗎?為什么? (2) 四邊形ABCD是菱形 嗎? 3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD于E,EF∥AB交BC于F,試問: 四 邊形ABFE是菱形嗎?請說明理由。 4.如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F. ⑴求證:ABF≌ ⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由. 一、學習目標: 1、使學生了解運用公式法分解因式的意義; 2、使學生掌握用平方差公式分解因式 二、重點難點 重點: 掌握運用平方差公式分解因式、 難點: 將單項式化為平方形式,再用平方差公式分解因式; 學習方法:歸納、概括、總結(jié) 三、合作學習 創(chuàng)設(shè)問題情境,引入新課 在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式、 如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法、 1、請看乘法公式 (a+b)(a-b)=a2-b2 (1)左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是 a2-b2=(a+b)(a-b) (2)左邊是一個多項式,右邊是整式的乘積、大家判斷一下,第二個式子從左邊到右邊是否是因式分解? 利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式、 a2-b2=(a+b)(a-b) 2、公式講解 如x2-16 =(x)2-42 =(x+4)(x-4)、 9 m 2-4n2 =(3 m )2-(2n)2 =(3 m +2n)(3 m -2n) 四、精講精練 例1、把下列各式分解因式: (1)25-16x2; (2)9a2- b2、 例2、把下列各式分解因式: (1)9(m+n)2-(m-n)2; (2)2x3-8x、 補充例題:判斷下列分解因式是否正確、 (1)(a+b)2-c2=a2+2ab+b2-c2、 (2)a4-1=(a2)2-1=(a2+1)?(a2-1)、 五、課堂練習 教科書練習 六、作業(yè) 1、教科書習題 2、分解因式:x4-16 x3-4x 4x2-(y-z)2 3、若x2-y2=30,x-y=-5求x+y 一、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運動稱為平移。 1.平移 2.平移的性質(zhì): ⑴經(jīng)過平移,對應點所連的線段平行且相等; ⑵對應線段平行且相等,對應角相等。 ⑶平移不改變圖形的大小和形狀(只改變圖形的位置)。 (4)平移后的圖形與原圖形全等。 3.簡單的平移作圖 ①確定個圖形平移后的位置的條件: ⑴需要原圖形的位置; ⑵需要平移的方向; ⑶需要平移的距離或一個對應點的位置。 ②作平移后的圖形的方法: ⑴找出關(guān)鍵點;⑵作出這些點平移后的對應點; ⑶將所作的對應點按原來方式順次連接,所得的; 二、旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn),這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角。 1.旋轉(zhuǎn) 2.旋轉(zhuǎn)的性質(zhì) ⑴旋轉(zhuǎn)變化前后,對應線段,對應角分別相等,圖形的大小,形狀都不改變(只改變圖形的位置)。 ⑵旋轉(zhuǎn)過程中,圖形上每一個點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度。 ⑶任意一對對應點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,對應點到旋轉(zhuǎn)中心的距離相等。 ⑷旋轉(zhuǎn)前后的兩個圖形全等。 3.簡單的旋轉(zhuǎn)作圖 ⑴已知原圖,旋轉(zhuǎn)中心和一對對應點,求作旋轉(zhuǎn)后的圖形。 ⑵已知原圖,旋轉(zhuǎn)中心和一對對應線段,求作旋轉(zhuǎn)后的圖形。 ⑶已知原圖,旋轉(zhuǎn)中心和旋轉(zhuǎn)角,求作旋轉(zhuǎn)后的圖形。 三、分析組合圖案的形成 ①確定組合圖案中的“基本圖案” ②發(fā)現(xiàn)該圖案各組成部分之間的內(nèi)在聯(lián)系 ③探索該圖案的形成過程,類型有:⑴平移變換;⑵旋轉(zhuǎn)變換;⑶軸對稱變換;⑷旋轉(zhuǎn)變換與平移變換的組合; ⑸旋轉(zhuǎn)變換與軸對稱變換的組合;⑹軸對稱變換與平移變換的組合。 【八年級數(shù)學教案】相關(guān)文章: 八年級的數(shù)學教案10-11 八年級數(shù)學教案11-13 八年級數(shù)學教案06-01 八年級數(shù)學教案12-26 八年級上冊數(shù)學教案07-26 八年級下冊數(shù)學教案08-30 八年級數(shù)學教案優(yōu)秀03-16 八年級上冊數(shù)學教案12-23 【熱】八年級數(shù)學教案12-30 八年級數(shù)學教案【熱門】01-02八年級數(shù)學教案7
八年級數(shù)學教案8
八年級數(shù)學教案9
八年級數(shù)學教案10
八年級數(shù)學教案11
八年級數(shù)學教案12
八年級數(shù)學教案13
八年級數(shù)學教案14
八年級數(shù)學教案15