圓周角定理的教學(xué)反思
“教師教,學(xué)生聽,教師問,學(xué)生答,教師出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴重阻礙了現(xiàn)代教育的發(fā)展。下面是小編幫大家整理的圓周角定理的教學(xué)反思,希望大家喜歡。
圓周角定理的教學(xué)反思(1)
本節(jié)課是人教版數(shù)學(xué)八年級下冊第十七章第一節(jié)第二課時的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識,了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對勾股定理的理解,提高學(xué)生對數(shù)形結(jié)合的應(yīng)用與理解,勾股定理的應(yīng)用的教學(xué)反思(鄭茹)。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應(yīng)用的過程;第二課時是通過例題分析與講解,讓學(xué)生感受勾股定理在實際生活中的應(yīng)用,通過從實際問題中抽象出直角三角形這一模型,強化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識和應(yīng)用能力。
針對本班學(xué)生的特點,學(xué)生知識水平、學(xué)習(xí)能力的差距,本節(jié)課安排了如下幾個環(huán)節(jié):
一、復(fù)習(xí)引入
對上節(jié)課勾股定理內(nèi)容進行回顧,強調(diào)易錯點。由于學(xué)生的注意力集中時間較短,學(xué)生知識水平低,引入內(nèi)容簡短明了,花費時間短。
二、例題講解,鞏固練習(xí),總結(jié)數(shù)學(xué)思想方法
活動一:用對媒體展示搬運工搬木板的問題,讓學(xué)生以小組交流合作,如何將木板運進門內(nèi)?需要知道們的寬、高,還是其他的條件?學(xué)生展示交流結(jié)果,之后教師引導(dǎo)學(xué)生書寫板書,教學(xué)反思《勾股定理的應(yīng)用的教學(xué)反思(鄭茹)》。整個活動以學(xué)生為主體,教師及時的引導(dǎo)和強調(diào)。
活動二:解決例二梯子滑落的問題。學(xué)生自主討論解決問題,書寫過程,之后投影學(xué)生書寫過程,教師與學(xué)生一起合作修改解題過程。
活動三:學(xué)生討論總結(jié)如何將實際生活中的問題轉(zhuǎn)化為數(shù)學(xué)問題,然后利用勾股定理解決問題。利用勾股定理的前提是什么?如何作輔助線構(gòu)造這一前提條件?在數(shù)學(xué)活動中發(fā)展了學(xué)生的探究意識和合作交流的習(xí)慣;體會勾股定理的應(yīng)用價值,讓學(xué)生體會到數(shù)學(xué)來源于生活,又應(yīng)用到生活中去,在學(xué)習(xí)的過程中體會獲得成功的喜悅,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。
三、鞏固練習(xí),熟練新知
通過測量旗桿活動,發(fā)展學(xué)生的探究意識,培養(yǎng)學(xué)生動手操作的能力,增加學(xué)生應(yīng)用數(shù)學(xué)知識解決實際問題的經(jīng)驗和感受。
在教學(xué)設(shè)計的實施中,也存在著一些問題:
1.由于本班學(xué)生能力的差距,本想著通過學(xué)生幫帶活動,使學(xué)困生充分參與課堂,但在學(xué)生合作交流是由于學(xué)習(xí)能力強的學(xué)生,對問題的分析解決所用時間短,而在整個環(huán)節(jié)設(shè)計中轉(zhuǎn)接的快,未給學(xué)困生充分的時間,導(dǎo)致部分學(xué)生未能真正的參與到課堂中來。
2.課堂上質(zhì)疑追問要起到好處,不要增加學(xué)生展示的難度,影響展示進程出現(xiàn)中斷或偏離主題的現(xiàn)象。
3.對學(xué)生課堂展示的評價方式應(yīng)體現(xiàn)生評生,師評生,及評價的針對性和及時性。
圓周角定理的教學(xué)反思(2)
我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角,如果勾(短直角邊)等于三,股(長直角邊)等于四,那么弦等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中,在這本書的另一處,還記載了勾股定理的一般形式。中國古代的幾何學(xué)家研究幾何是為了實用,是唯用是尚的。在勾股定理教學(xué)中反思如下:
一轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。
由同學(xué)們的作圖,我們發(fā)現(xiàn)有的直角三角形的三邊具有這種關(guān)系,有的直角三角形不具有這種性質(zhì)。當(dāng)然作圖存在著誤差。可仍然證明不了我們的猜想是否正確。下面我們用拼圖的方法再來驗證一下。請同學(xué)們拿出準備好的直角三角形和正方形,利用拼圖和面積計算來證明a2+b2=c2(學(xué)生分組討論。)學(xué)生展示拼圖方法,課件輔助演示。
新課標下要求教師個人素質(zhì)越來越高,教師自身要不斷及時地學(xué)習(xí)新知識,接受新信息,對自己及時充電、更新,而且要具有詼諧幽默的語言表達能力。既要有領(lǐng)導(dǎo)者的組織指導(dǎo)能力,更重要的是要有被學(xué)生欣賞佩服的魅力,只有學(xué)生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應(yīng)付自如,高效率完成教學(xué)目標。
“教師教,學(xué)生聽,教師問,學(xué)生答,教室出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學(xué)生的實踐能力,而且會造成機械的學(xué)習(xí)知識,形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,新課標要求老師一定要改變角色,變主角為配角,把主動權(quán)交給學(xué)生,讓學(xué)生提出問題,動手操作,小組討論,合作交流,把學(xué)生想到的',想說的想法和認識都讓他們盡情地表達,然后教師再進行點評與引導(dǎo),這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會與日劇增。
數(shù)學(xué)的創(chuàng)造性不能沒有邏輯思維,學(xué)習(xí)數(shù)學(xué)可以幫助養(yǎng)成理性思考的習(xí)慣。數(shù)學(xué)并不是公式的堆壘,也不是圖形的匯集,數(shù)學(xué)有邏輯性很強的體系。數(shù)學(xué)不是只強調(diào)計算與規(guī)則的課程,而是講道理的課程。培養(yǎng)與運用邏輯思維,并不是不顧及學(xué)生的可接受性一味地片面強調(diào)推理的嚴密和體系的完整,而是既要體現(xiàn)邏輯推理的作用,又不片面夸大它。幾何的教學(xué)體系有別于幾何的科學(xué)體系,在幾何教學(xué)中,講道理并完全不等同于純粹的形式證明,幾何教學(xué)培養(yǎng)邏輯思維能力同樣要有的放矢,循序漸進,從直觀到抽象,從簡單到復(fù)雜?? 二轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會學(xué)習(xí)過程。
學(xué)生學(xué)會了數(shù)學(xué)知識,卻不會解決與之有關(guān)的實際問題,造成了知識學(xué)習(xí)和知識應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問題,對于學(xué)生實踐能力的培養(yǎng)非常不利的。現(xiàn)在的數(shù)學(xué)教學(xué)到處充斥著過量的、重復(fù)的、不斷循環(huán)的、人為挖掘的訓(xùn)練。 學(xué)習(xí)的過程性:
1.關(guān)注學(xué)生是否積極參加探索勾股定理的活動,關(guān)注學(xué)生能否在活動中積思考,能夠探索出解決問題的方法,能否進行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達活動過程和所獲得的結(jié)論等;
2.關(guān)注學(xué)生的拼圖過程,鼓勵學(xué)生結(jié)合自己所拼得的正方形驗證勾股定理. 學(xué)習(xí)的知識性:掌握勾股定理,體會數(shù)形結(jié)合的思想.
試一試:我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池正中央有一根新生的蘆葦,它高出水面1尺。如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面。請問這個水池的深度和蘆葦?shù)拈L度各是多少?
新課標對幾何內(nèi)容的安排。安排采取了首先是直觀和經(jīng)驗,接著是說理與抽象,最后是演繹
的方案。以直線形為例,先借助直觀認識一個直線形,進而借助多種手段合乎情理地發(fā)現(xiàn)它的某種幾何性質(zhì),接著通過演繹推理把這個性質(zhì)搞定。看上去,強化了直觀和實驗,弱化了推理,實際上,在這里直觀和推理兩者都很重要,而且兩者之間互為支撐,有互逆的性質(zhì)。讓直觀幾何和推理幾何并重,把發(fā)現(xiàn)和證明綁在一起,與傳統(tǒng)的幾何課程體系確有不同。說到幾何,新課標對幾何的重視程度絲毫沒有減弱,而是在加強。例如直觀和實驗幾何的觸角已經(jīng)伸向了小學(xué)低年級,同時歐氏幾何的體系和內(nèi)容差不多還是完整呈現(xiàn)。如果說有所弱化,就是具體要求降低了,這種降低主要體現(xiàn)在兩個方面,一個是對推理幾何的難度要求有所限制,另外是弱化了相似形和圓(包括圓與直線之間的關(guān)系)這塊內(nèi)容的證明部分。
教材內(nèi)容的豐富,充分激發(fā)了學(xué)生的學(xué)習(xí)積極性。教材編排了一些游戲性的智力題,引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,探索數(shù)學(xué)世界的奧秘,采用閱讀一些數(shù)學(xué)小故事和數(shù)學(xué)發(fā)展史,豐富學(xué)生的數(shù)學(xué)知識和對世界數(shù)學(xué)文化的了解,充分激發(fā)了學(xué)生繼續(xù)學(xué)習(xí)數(shù)學(xué)和發(fā)展數(shù)學(xué)的積極性,把生活中的實物抽象成幾何圖形,讓學(xué)生了解豐富變幻的圖形世界,培養(yǎng)了學(xué)生抽象思維能力,特別側(cè)重于培養(yǎng)學(xué)生認識事物,探索問題,解決實際的能力。讓學(xué)生感興趣且愿意學(xué),并且接受知識是循序漸進的過程,隨著數(shù)學(xué)知識的不斷學(xué)習(xí),也使學(xué)生親身體會到了學(xué)習(xí)數(shù)學(xué)的重要意義:我們的生活中處處離不開數(shù)學(xué),處處需要數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)也是非常有意思的。三提高教學(xué)科技含量,充分利用多媒體。
幾何圖形可以直觀地表示出來,人們認識圖形的初級階段中主要依靠形象思維。遠古時期人們對幾何圖形的認識始于觀察、測量、比較等直觀實驗手段,現(xiàn)代兒童認識幾何圖形亦如此,人們可以通過直觀實驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的情形,例如有無數(shù)種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進行直觀實驗所得到的認識,一定適合其他情況驗回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置.
培養(yǎng)邏輯推理能力,作了認真的考慮和精心的設(shè)計,把推理證明作為學(xué)生觀察、實驗、探究得出結(jié)論的自然延續(xù)。在這套教科書的幾何部分,七年級上、下兩冊要先后經(jīng)歷“說點兒理”“說理”“簡單推理”幾個層次,有意識地逐步強化關(guān)于推理的初步訓(xùn)練,主要做法是在問題的分析中強調(diào)求解過程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習(xí)慣。
由于信息技術(shù)的發(fā)展與普及,直觀實驗手段在教學(xué)中日益增加,有些學(xué)校還建立了“數(shù)學(xué)實驗室”,這些對于幾何學(xué)的學(xué)習(xí)起到積極作用。隨著教學(xué)研究的不斷深入,直觀實驗會在啟發(fā)誘導(dǎo)、化難為易、檢驗猜想等方面進一步大顯身手。但是,直觀實驗終歸是數(shù)學(xué)學(xué)習(xí)的輔助手段,數(shù)學(xué)畢竟不是實驗科學(xué),它不能象物理、化學(xué)、生物等學(xué)科那樣最后通過實驗來確定結(jié)論。實驗幾何只是學(xué)習(xí)幾何學(xué)的前奏曲或第一樂章,后面的樂曲建立在理性思維基礎(chǔ)上,邏輯推理是把演奏推向高潮的主要手段。
四轉(zhuǎn)變評價手段,讓每個學(xué)生找到學(xué)習(xí)數(shù)學(xué)的自信。
評價就其實質(zhì)來講,乃是一種監(jiān)控機制。這種反饋監(jiān)控機制包括"他律"與"自律"兩個方面。所謂"他律"是以他人評價為基礎(chǔ)的,"自律"是以自我評價為基礎(chǔ)的。每個人素質(zhì)生成都經(jīng)歷著一個從"他律"到"自律"的發(fā)展過程,經(jīng)歷著一個從學(xué)會評價他人到學(xué)會評價自己的發(fā)展過程。實施他人評價,完善素質(zhì)發(fā)展的他人監(jiān)控機制很有必要。每個人都要以他人為鏡,從他人這面鏡子中照見自我。但發(fā)展的成熟、素質(zhì)的完善主要建立在自律的基礎(chǔ)上,是以素質(zhì)的自我評價、自我調(diào)節(jié)、自我教育為標志的。因此要改變單純由教師評價的現(xiàn)狀,提倡評價主體的多元化,把教師評價、同學(xué)評價、家長評價及學(xué)生的自評相結(jié)合。尤其要突出學(xué)生的自評,提高他們的自我認識、自我調(diào)節(jié)、自我評價的能力,增強反思意識,培養(yǎng)健康的心理。 注重數(shù)學(xué)與生活的聯(lián)系,從學(xué)生認知規(guī)律和接受水平出發(fā),這些理念貫徹到教材與課堂教學(xué)當(dāng)中,很好地激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。學(xué)生們善于提出問題、敢于提出問題、解決問題的能力強,已經(jīng)成為數(shù)學(xué)新課標下學(xué)生表現(xiàn)的一個標志。
通過學(xué)習(xí)幾何可以認識豐富多彩的幾何圖形,建立與發(fā)展空間觀念,掌握必要的幾何知識,培養(yǎng)運用這些知識認識世界與改造世界的能力。但是,這些并不是幾何學(xué)的全部教育功能。從更深層次看,學(xué)習(xí)幾何學(xué)的一個重要的作用是:以幾何圖形為載體,培養(yǎng)邏輯思維能力,提高理性思維水平。這正是自古希臘開始幾何教學(xué)一直倍受重視的主要原因。
從實際需要看,一個普通人一生中運用幾何知識的時間、場合,要比他應(yīng)該運用邏輯思維的時間、場合少得多。前者在特定的環(huán)境下發(fā)生,而后者經(jīng)常地、普遍地出現(xiàn),它的作用遠比前者大得多。一個人學(xué)過幾何后,如果不繼續(xù)從事與數(shù)學(xué)關(guān)系密切的學(xué)習(xí)或工作,他一生中有可能很少甚至不會用到在某個幾何定理,但是他肯定應(yīng)該經(jīng)常不斷地在不同程度上使用邏輯推理來分析問題。當(dāng)然,其他課程也可以培養(yǎng)學(xué)生的邏輯思維能力,學(xué)習(xí)幾何學(xué)并不是實現(xiàn)此目的之唯一途徑。但是,長期以來幾何學(xué)被普遍認為是適合培養(yǎng)邏輯思維能力的絕好課程是客觀事實。形成這種狀況的原因主要有:幾何學(xué)的歷史悠久,學(xué)科體系成熟;幾何學(xué)體系的邏輯性特點格外突出;幾何學(xué)的研究對象是幾何圖形,結(jié)合幾何圖形,利用圖形語言,在一定程度上可以降低認識和理解邏輯推理的難度。
按照人的一般認知規(guī)律,認識幾何圖形的過程,也是從具體到抽象,從簡單到復(fù)雜,從特殊到一般,從感性到理性的過程。根據(jù)教育心理學(xué)的規(guī)律可知,初中學(xué)生多處于認識方法發(fā)生升華的階段,他們對事物的認識已不滿足于表面的、孤立的層次,而有了向更深層次發(fā)展的要求,即向往“由此及彼,由表及里”的思維方式。從幾何教學(xué)的內(nèi)容看,學(xué)生們從小學(xué)開始已經(jīng)通過直觀實驗這種主要方式學(xué)習(xí)了基礎(chǔ)的圖形知識,在他們的頭腦中已經(jīng)積累了一定的關(guān)于圖形的感性認識,在初中階段應(yīng)該更深入地在“為什么”的層面上認識圖形。顯然,單純的直觀實驗這種學(xué)習(xí)方式已經(jīng)不適應(yīng)繼續(xù)深入學(xué)習(xí)的需要,因為這種方式難以真正從道理上對圖形規(guī)律進行解釋,而邏輯推理的方式才能擔(dān)此重任。因此,從“實驗幾何”向“推理幾何”的過渡成為初中幾何教學(xué)必須面對的問題,培養(yǎng)邏輯推理能力成為初中幾何教學(xué)必須實現(xiàn)的教學(xué)目標。
認識幾何圖形既需要形象思維,又需要抽象思維,兩者相輔相成。雖然我們強調(diào)幾何教學(xué)中邏輯推理的重要性,但是并不排斥直觀實驗。直觀實驗是初級認識手段,邏輯推理是高級認識手段。“看一看”“量一量”“做一做”等直觀實驗活動在幾何學(xué)習(xí)的初始階段的重要性尤為突出,即使在推理幾何階段的學(xué)習(xí)中,直觀實驗也具有重要的輔助作用,人們常借助某些直觀特例來發(fā)現(xiàn)一般規(guī)律、探尋證明思路、理解抽象內(nèi)容,有時直觀實驗與邏輯推理是交替進行的。
讓學(xué)生享受數(shù)學(xué)的有趣:可利用愉快的游戲、生動的故事、激烈的競賽、入境的表演、熱情的掌聲等創(chuàng)設(shè)出一種愉悅的學(xué)習(xí)情境,誘發(fā)學(xué)生的學(xué)習(xí)情趣;讓學(xué)生時常感受到“數(shù)學(xué)真奇妙!”,從而產(chǎn)生“我也想試一試!”的心理。
讓學(xué)生享受數(shù)學(xué)的有用:借助生活情境,讓學(xué)生尋找有關(guān)的數(shù)學(xué)問題,使學(xué)生體會到我們的生活中蘊涵著豐富的數(shù)學(xué)問題,感受數(shù)學(xué)學(xué)習(xí)在生活中的作用。
讓學(xué)生享受數(shù)學(xué)的精彩:創(chuàng)設(shè)一切機會讓學(xué)生學(xué)會思考,樂于思考、善于思考,只有這樣,數(shù)學(xué)才能展示其精彩的一面;在教學(xué)中可有意識地安排一些問題讓學(xué)生多途徑思考,發(fā)現(xiàn)答案有多種多樣;讓他們體味出更多的精彩!享受數(shù)學(xué)的成功:“教育教學(xué)的本質(zhì)就是幫助學(xué)生成功。”一次成功的機會卻可以十倍地增強學(xué)生的信心;因此,課堂上教師應(yīng)毫不吝嗇自己鼓勵的眼神、贊許的話語,批改作業(yè)時盡量少一些令人生厭的“×”,可以寫上“再算算”。
【圓周角定理的教學(xué)反思】相關(guān)文章:
圓周角的教學(xué)反思02-22
圓周角教學(xué)反思05-17
《勾股定理逆定理》教學(xué)反思11-01
《勾股定理逆定理》教學(xué)反思10-31
《勾股定理的逆定理》教學(xué)反思09-01
正弦定理教學(xué)反思12-23
勾股定理的教學(xué)反思10-08
勾股定理教學(xué)反思09-01