四年級下冊數(shù)學《乘法分配律》教學反思范文(通用5篇)
作為一名優(yōu)秀的教師,我們的工作之一就是課堂教學,寫教學反思能總結教學過程中的很多講課技巧,優(yōu)秀的教學反思都具備一些什么特點呢?下面是小編精心整理的四年級下冊數(shù)學《乘法分配律》教學反思范文(通用5篇),僅供參考,大家一起來看看吧。
數(shù)學《乘法分配律》教學反思1
1、乘法分配律的教學既要注重它的外形結構特點,也要同時注重其內涵
教學中通過解決“濟青高速公路全長多少千米”這一問題,結合具體的生活情景,得到了(110+90)x2=110x2+90x2”這一結果,教學中只注重了等式的外形特點,即兩個數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。這時教師可提問“為什么兩個算式是相等的?”這里不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法意義的角度理解,即左邊表示200個2,右邊也表示200個2。所以(110+90)x2=110x2+90x2。
2、注意區(qū)分乘法結合律與乘法分配律的特點,多進行對比練習
乘法結合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習中(40+4)×25與(40×4)×25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15×(8×4)和15×(8+4);25×125×25×8和25×125+25×8;練習中可以提問:每組算是個有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學生進行一題多解的練習,經歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結合律與乘法分配律的理解
如:計算125×88;101×89你能用幾種方法?125×88①豎式計算;②125×8×11;③125×(80+8)等。101×89①豎式計算;②(100+1)×89;③101×(80+9)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結合律簡便,什么時候用乘法分配律簡便?明確利用乘法結合律與乘法分配律進行簡算,乘法結合律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到“用簡便算法進行計算”成為學生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當?shù)乃惴ǖ哪康摹?/p>
4、多練
針對典型題目多次進行練習。練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)×25;(40×4)×25;63×25+63×75;65×103-65×3;56×99+56;125×88;48×102;48×99等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如68×25+68+68×74,32×125×25等。
數(shù)學《乘法分配律》教學反思2
乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數(shù)學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。
一、抓住重點。讓學生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學生經歷觀察、分析、比較和根據(jù)的過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學時,我是按照如上的步驟進行教學的。可是在我引導學生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析。可以說,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠寫出來。
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經發(fā)現(xiàn)我們班上的學生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個關鍵今天并沒有完成好。
二、考慮學生的學習情況,尊重他們的主觀感受。
在引導學生把兩道算式拼成一道等式之后,我讓學生交流,結果學生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學也有了兩種的表達方式:即(A+B)×C=A×C+B×C和A×C+B=(A+B)×C。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學生,乘法分配律的表示一般性采用的是這一條。
三、練習中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經過了第四題的練習時也是一樣。
今天教學了運算律——乘法分配律,對于例題的解決,學生能列出不同的算式,45*5+65*5和(45+65)*5,通過各自的計算得出計算結果相同,然后把這兩條算式寫成等式45*5+65*5=(45+65)*5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結自己的發(fā)現(xiàn),學生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把A*C+B*C改寫成(A+B)*C的正確率要比把(A+B)*C改寫成A*C+B*C的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。想想做做第2題的第3小題74*(21+1)和74*21+74部分學生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74*21+74*1再運用乘法分配律變形成74*(21+1),學生理解后我補充77*99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了A*B+B=□(□○□)和A*B+B=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48*3+48*2來計算,卻不能靈活運用所學知識列成(3+2)*48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。
數(shù)學《乘法分配律》教學反思3
乘法分配律是繼乘法交換律、乘法結合律之后的新的運算定律,在算術理論中又叫乘法對加法的分配性質,由于它不同于乘法交換律和結合律是單一的運算。
從某種程度上來說,其抽象程度要高一些,因此,對學生而言,難度偏大,是計算的一個難點。因為它不僅僅是的乘法運算,還涉及到加法運算。這節(jié)課劉老師教學目標定位準確,沒有把目標定位局限于探索理解乘法分配律,而是又引導學生應用乘法分配律進行了簡便計算,通過學生與學生之間的互相啟發(fā)與補充,老師的及時點撥,實現(xiàn)對“乘法分配律”這一運算定律的主動建構。整節(jié)課的學習氛圍輕松愉悅、學生思維活躍、教學效果非常好。基本完成教學任務。
劉老師對本課的教學設計很科學,思路清晰,發(fā)現(xiàn)問題——觀察比較——舉例驗證——歸納規(guī)律——運用規(guī)律,讓學生經歷了從具體到抽象,再由抽象到具體的知識推理方法,這節(jié)課不僅教會了乘法分配律,更教會了學生一種數(shù)學思想和數(shù)學方法,這也正是新課標強調的對學生其中兩基培養(yǎng)的體現(xiàn)。
一、讓學生從生活實例去理解乘法分配律
一共25個小組參加植樹活動,每組里8人負責挖坑和種樹,4人負責抬水和澆樹。重組教材,改變每組的人數(shù),由(4+2)個25,變?yōu)?8+6)個25更能凸顯出應用乘法分配律后帶來的方便,也為乘法分配律的應用打下伏筆和基礎。并且把“挖坑、種樹”“抬水、澆樹”更改為“挖坑和種樹”“抬水和澆樹”減少了文字對學生理解帶來的困難。
通過引入解決問題讓學生得到兩個算式。先捉其意義,再突顯其表現(xiàn)的形式。
如(4+2)×25其意義就是6個25與4×25+2×25所表示的也是4個25再加2個25也就是6個25,它們的表示意義一樣。因此得數(shù)也一樣故成等量關系。然后觀察它們之們的形式變化特點,兩個數(shù)的和乘以一個數(shù)可以寫成兩個積相加的形式,再捉住因數(shù)的特點進行分析。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。這是生活中遇到過的,學生能夠理解兩個算式表達的意思,也能順利地解決兩個算式相等的問題。
二、突破乘法分配律的教學難點
讓學生親歷規(guī)律探索形成過程。對于探索簡潔分配律的過程價值,絲毫不低于知識的掌握價值。既然是“規(guī)律定律”,就是讓學生親歷規(guī)律形成的科學過程設計中,不著痕跡的讓學生不斷觀察、比較、猜想、驗證,從而概括出乘法分配律,在探索、歸納過程中,滲透著從特殊到一般,又由一般到特殊的數(shù)學思想和方法。
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結構是最復雜的,等式變形的能力是教學的難點。為了突破這個教學難點,從生活中的實際問題出發(fā),開放引入的情境,一共25個小組參加植樹活動,每組里人負責,人負責。一共有多少同學參加這次植樹活動?
學生主動去設計、解決,調動學生的積極性。讓學生根據(jù)自己的想法,選擇自己喜歡的方案,開放給學生,發(fā)揮學生的主體性,通過去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,驗證其內在的規(guī)律,從而概括出乘法分配律。讓學生能自由地利用自己的知識經驗、思維方式去嘗試解決問題,在探究這一系列的等式有什么共同點的活動中。
在學生已有的知識經驗的.基礎上,一起來研究抽象的算式,尋找它們各自的特點,從而概括它們的規(guī)律。在尋找規(guī)律的過程中,有同學是橫向觀察,也有同學是縱向觀察,目的是讓學生從自己的數(shù)學現(xiàn)實出發(fā),去嘗試解決問題,又能使不同思維水平的學生得到相應的滿足,獲得相應的成功體驗。
當然,對乘法分配律的意義還需做到更式形結合解釋,那就更有利于模型的建立。
建議:在教學中不僅要注意乘法分配律的外形結構,更要注重其內涵。如兩個算式為什么會相等?缺乏從乘法意義的角度進行理解。在理解這一概念時,尤其要抓住關鍵詞“分別”加以分析,以此深化對數(shù)學模型的理解。否則,象38×99+38這樣的形式,就會成為學生練習中的攔路虎。
數(shù)學《乘法分配律》教學反思4
乘法分配律是在學生學習了加法交換律、結合律和乘法交換律、結合律的基礎上教學的。乘法分配律也是學生較難理解和敘述的定律。因此在本節(jié)課教學設計上,我結合新課標的一些基本理念和本地區(qū)的具體情況,注重從學生的實際出發(fā),把數(shù)學知識和實際生活緊密聯(lián)系起來,讓學生在不斷的感悟和體驗中學習知識。
《數(shù)學課程標準》指出:“學生的數(shù)學學習內容應當是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的。”數(shù)學教育家波利亞曾經說過:“數(shù)學教師的首要責任是盡其一切可能,來發(fā)展學生解決問題的能力。”而我們過去的教學往往比較重視解決書上的數(shù)學問題,學生一旦遇到實際問題就束手無策。因此,在上課的一開始,我創(chuàng)造性地使用教材,創(chuàng)設了一個肯德基餐廳用餐的情境,使學生置身于非常熟悉的生活情境中,極大地激發(fā)了學生的學習欲望。學生很快地按要求用兩種不同的方法列出算式,并且能夠輕而易舉地證明兩式相等。接著要求學生通過觀察這個等式看看能否發(fā)現(xiàn)什么規(guī)律。在此基礎上,我并沒有急于讓學生說出規(guī)律,而是繼續(xù)為學生提供具有挑戰(zhàn)性的研究機會:“請你再舉出一些符合自己心中規(guī)律的等式”,繼續(xù)讓學生觀察、思考、猜想,然后交流、分析、探討,感悟到等式的特點,驗證其內在的規(guī)律,從而概括出乘法分配律。這樣既培養(yǎng)了學生的猜想能力,又培養(yǎng)了學生驗證猜想的能力。學生通過自主探索去發(fā)現(xiàn)、猜想、質疑、感悟、調整、驗證、完善,主體性得到了充分的發(fā)揮。
與此同時,我還十分注重合作與交流,多向互動。倡導課堂教學的動態(tài)生成是新課程標準的重要理念。在數(shù)學學習中,每個學生的思維方式、智力、活動水平都是不一樣的。因此,為了讓不同的學生在數(shù)學學習中都得到發(fā)展,我在本課教學中立足通過生生、師生之間多向互動,特別是通過學生之間的互相啟發(fā)與補充來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”的主動建構。學生在這樣一個開放的環(huán)境中博采眾長,共同經歷猜想、驗證、歸納知識的形成過程,共同體驗成功的快樂。既培養(yǎng)了學生的問題意識,又拓寬了學生思維,學生也學得積極主動。
應用規(guī)律,解決實際問題是數(shù)學學習的目的所在。在練習題型的設計上,有搶答(填空)題、判斷題、連線題、簡算題和拓展題,它們并不孤立,而是有機地聯(lián)系在一起,由基本題到變式題,由一般題到綜合題,有一定的梯度和廣度。使學生逐步加深認識,在弄清算理的基礎上,學生能根據(jù)題目的特點,靈活地運用所學知識進行簡便運算和拓展練習。不僅要求學生會順向應用乘法分配律,而且還要求學生會反向應用。通過正反應用的練習,加深學生對乘法分配律的理解。從課堂反饋來看,學生熱情較高,能夠學以致用。學生通過自己的努力以及和同學的交流合作,解題速度和準確性都很理想。只有這樣才能真正提高學生的計算能力。
本節(jié)課有一定的亮點,但其中出現(xiàn)了不少問題:學生參與的積極性沒有預想中那么高。可能與我相對缺乏激勵性語言有關。也有可能今天的題材學生不太感興趣。但學生不感興趣的材料,教師應該想辦法使呈現(xiàn)的這個材料變得能讓學生感興趣。另外,在回答問題時,個別學生的語言不夠流利、準確。對乘法分配律的敘述稍顯羅嗦,不夠堅定、自信。在這方面有待今后加強訓練和提高。
數(shù)學《乘法分配律》教學反思5
乘法分配律是在學生學習了加法交換律、加法結合律及乘法交換律、乘法結合律的基礎上教學的。乘法分配律也是學生較難理解與敘述的定律。如何教學能使學生較好的理解乘法分配律的內涵,并能正確的運用定律進行簡便運算呢?我做了一下幾點嘗試。
一、創(chuàng)設師生競賽,激發(fā)學習欲望。
上課教師先出示:(1)8×(125+11) (2)(100+1)×23(3 )648×5+352×5
老師和同學們做一個比賽,王老師口算,你們用計算器算,看看誰能獲。
結果教師又快又對,學生都很奇怪,教師順勢導入:同學們都特別想知道在比賽過程中,學生用計算器都沒有老師口算得快的原因嗎?是因為老師又運用了乘法的一個法寶,知道了乘法的又一個定律可以使運算簡便,你們想知道嗎?今天我們就來探究其中的奧秘。
這樣的導入讓學生充滿了求知的欲望,激發(fā)了學習的熱情。
二、設計思考問題,學生自主探究。
出示例題后,學生獨立解答,然后教師出示思考問題,學生自主探究。
討論:
1、這兩種方法有什么不同?兩個算式的結果如何?用什么符號連接?
2、那么等號連接的這兩個算式有什么特點和聯(lián)系呢?請同學們帶著老師給出的三個問題展開討論。(課件出示問題)生A:我發(fā)現(xiàn)左邊括號外的那個數(shù),寫到右邊都要乘兩次。
生B:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結果不變。
整個教學過程通過學生觀察、比較、分析理解乘法分配律的含義,教師引導學生概括出乘法分配律的內容。
三、練習有坡度,前后有呼應。
在本課的練習設計上,我力求有針對性,有坡度,同時也注意知識的延伸。練習的形式多樣,課本上的填空題解決以后,設計了判斷題和練習題,把學生易出錯的問題提前預設好,而且通過練習讓學生明白乘法分配律也可以兩個數(shù)的差,也可以是三個數(shù)的和,使學生對乘法分配律的內容得到進一步完整,也為后面利用乘法分配律進行簡算打下伏筆。為了讓學生初步感受乘法分配律能使一些計算簡便,我特意把開始和老師比賽的題目讓學生運用今天所學知識進行計算,學生非常有興趣,在練習中培養(yǎng)了學生分析、推理、概括的思維能力。
總之,在本堂課中新的教學理念有所體現(xiàn),是一節(jié)本色的數(shù)學課堂。但在具體的操作中還缺乏成熟的思考,自主探究環(huán)節(jié)對問題的設計不夠簡潔,還可以再做斟酌。實際分配律的揭示過程與教案設計順序有些出入,感覺效果沒有預想的好,上課時對于教案的熟悉程度還有待加強。
【四年級下冊數(shù)學《乘法分配律》教學反思范文(通用5篇)】相關文章:
《乘法分配律》教學反思09-03
西師大版四年級數(shù)學下冊說課稿 乘法分配律11-04
數(shù)學分數(shù)乘法教學反思10-11
乘法分配律教學設計(15篇)01-02
《8的乘法口訣》數(shù)學教學反思11-17
《乘法公式》教學反思01-26
分數(shù)乘法教學反思02-09
乘法分配律說課設計12-01