簡易方程教學(xué)反思
身為一位優(yōu)秀的教師,我們需要很強(qiáng)的教學(xué)能力,通過教學(xué)反思可以很好地改正講課缺點(diǎn),那么你有了解過教學(xué)反思嗎?下面是小編整理的簡易方程教學(xué)反思,希望對大家有所幫助。
簡易方程教學(xué)反思1
記得我以前上學(xué)的時候,解最簡單的方程的方式是這樣的:比如x+5=8就是x=8-5,x=3。那時覺得很好懂,但是現(xiàn)在五年級課本上是這樣的:x+5=8,x+5-5=8-5,x=3。看起來比較復(fù)雜。開始接觸到這個課程時看到教材例題中的解法感覺很疑惑,百思不得其解。為什么新課程的“解方程”教學(xué)要“繞遠(yuǎn)路”?如果單單從簡單的加減乘除的方程來看,第一種方法無疑是簡單易懂而且步驟少,而第二種方法就相對復(fù)雜了。那教材這樣改的目的是什么呢?深入研究教參后我體會很深,明白了新課程數(shù)學(xué)教學(xué)要“瞻前顧后”的道理。
新課程的改革,更加注重知識的遷移和聯(lián)系,使得小學(xué)的知識要體現(xiàn)與初中更加的接軌,五年級上冊第四單元“解簡易方程”中進(jìn)行了一次新的改革。要求方程的解法要根據(jù)天平的原理來進(jìn)行解答,也就是說要通過等式的性質(zhì)來解方程,這一方法讓方程的解法找到了本質(zhì)的東西。老教材中解方程的教學(xué)是利用加減乘除各部分之間的關(guān)系解決的,學(xué)生只要掌握了一個加數(shù)=和-另一個加數(shù),減數(shù)=被減數(shù)-差,被減數(shù)=差+減數(shù),一個因數(shù)=積÷另一個因數(shù),除數(shù)=被除數(shù)÷商,被除數(shù)=商×除數(shù)這些關(guān)系式,不管是簡單的還是復(fù)雜的方程都可以用這些關(guān)系式去解。而我們新教材卻完全不是這種方法,它是利用天平的平衡原理得到等式的基本性質(zhì),即等式的兩邊同時加上或減去同一個數(shù)等式不變,和等式的兩邊同時乘或除以同一個數(shù)(0除外),等式不變進(jìn)行解方程的。新教材如果能把天平的規(guī)律教學(xué)得到位,這樣就能把等式性質(zhì)掌握好,等式性質(zhì)掌握的好了解起方程來也有規(guī)律可循了。于是,我在教學(xué)時充分地利用天平實(shí)物以及課件讓學(xué)生深入地理解天平的平衡規(guī)律,從而順利地揭示出了等式的性質(zhì)。這樣在解簡易方程時學(xué)生很容易掌握方法。知道未知數(shù)加(或減)一個數(shù)時,只要在方程的兩邊同時減(或加)同一個數(shù),未知數(shù)乘(或除)一個數(shù)時,只要在方程的兩邊同時除(或乘)同一個數(shù)即可。一般不會出現(xiàn)運(yùn)算符號弄錯的現(xiàn)象了。所以雖然復(fù)雜,但是更容易掌握。
簡易方程教學(xué)反思2
在以前人教版教材中,學(xué)習(xí)解方程之前首先要求學(xué)生掌握加、減、乘、除法各部分之間的關(guān)系,然后利用加減乘除各部分之間的關(guān)系來求出方程中的未知數(shù),而今的人教版教材的設(shè)計(jì)打破了傳統(tǒng)的教學(xué)方法,而是借用天平使學(xué)生首先感悟“等式”,知道“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,這樣就能從真正意義上很好地揭示方程的意義,進(jìn)而學(xué)會解方程,還能使之與中學(xué)的移項(xiàng)解方程建立起聯(lián)系。在這節(jié)課的教學(xué)中,我從以下幾個方面入手:
一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。
1、在學(xué)習(xí)中,我以天平的平衡來呈現(xiàn)等式的性質(zhì),學(xué)生能直觀形象的理解性質(zhì),平衡的條件是兩邊同時加上、或減少相同的重量,才能保持平衡。但具體到方程中應(yīng)用起來學(xué)生感覺比較抽象,我引導(dǎo)學(xué)生在反復(fù)操作中理解加、減一個數(shù)的目的和依據(jù)。
我在天平的左側(cè)放5克砝碼,右側(cè)也放5克砝碼。(拋磚引玉)
2、學(xué)生親自動手反復(fù)不斷的進(jìn)行操作。(學(xué)生動手操作)
在此基礎(chǔ)上,我再做進(jìn)一步的引導(dǎo)。
活動是獲取真知的有效途徑,通過以上的活動,學(xué)生可以很順利地得出結(jié)果:天平的兩側(cè)都加上相同的質(zhì)量,天平仍平衡。
3、教師:請同學(xué)們都想一想,如果天平兩側(cè)都減去相同的質(zhì)量,天平會出現(xiàn)什么現(xiàn)象?你能列出幾個這樣的方程嗎?(學(xué)生同桌之間通過充分地交流,反饋交流結(jié)果,學(xué)生得知,如果我們把天平作為一個等式(當(dāng)天平平衡時)的話,等式的兩邊都減去同一個數(shù),等式仍然成立。通過引導(dǎo),學(xué)生能完全得出了等式的性質(zhì)。最后我們通過學(xué)生自己的整理和總結(jié),把以上發(fā)現(xiàn)的性質(zhì)合二為一。得出:等式的兩邊都加上(或減去)同一個數(shù),等式仍然成立。
二、利用等式性質(zhì)解方程-——初步感悟它的妙用
在課堂上學(xué)生對用等式的性質(zhì)來解方程感到很陌生,在他們原有的經(jīng)驗(yàn)中更喜歡用加減法各部分的關(guān)系來解,所以我們要特別注意引導(dǎo)學(xué)生認(rèn)識到用等式的性質(zhì)來解方程的優(yōu)越性,從而養(yǎng)成用等式的性質(zhì)來解方程的習(xí)慣。
在整節(jié)課的教學(xué)中,其實(shí)學(xué)生是非常主動的,他們總覺得天平能啟發(fā)著他們?nèi)ソ鉀Q這么神奇的方程,孩子們對方程都有一種難以割舍的好奇心。
告訴學(xué)生利用等式的性質(zhì)來解方程熟練以后特別快。同時強(qiáng)調(diào)書寫格式。通過教學(xué),學(xué)生利用等式的性質(zhì)學(xué)生能解決簡單的方程,但我認(rèn)為利用等式性質(zhì)解方程的方法單一化,內(nèi)容雖少問題很多。其表現(xiàn)在:
1、從教材的編排上,整體難度下降,有意避開了形如:66—2X=30等類型的題目。把用等式解決的方法單一化了。在實(shí)際教學(xué)中我們要求學(xué)生較熟練地利用等式的方法來解方程,但用這樣的方法來解方程之后,書本不再出現(xiàn)X在后面的方程題了,學(xué)生在列方程解實(shí)際應(yīng)用時,我們并不能刻意地強(qiáng)調(diào)學(xué)生不會列出X在后面的方程嗎?我們更頭痛于學(xué)生的實(shí)際解答能力。在實(shí)際的方程應(yīng)用中,這種情況是不可避免的。很顯然這存在著目前的局限性了。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點(diǎn)麻煩了。而且有的學(xué)生還很難掌握這樣方法。
2、內(nèi)容看似少實(shí)際教得多。難度下降后,看起來教師要教的內(nèi)容變得少了,可實(shí)際上反而是多了。教師要給他們補(bǔ)充X在后面的方程的解法。要教他們列方程時怎么避免X在后面這樣方程的出現(xiàn)等等。因此,我干脆就又把原來的老方法交給同學(xué)們,以便備用或請他們根據(jù)具體情況選擇適當(dāng)?shù)慕忸}方法。
3、我個人認(rèn)為:現(xiàn)行教材的某些地方還有待于進(jìn)一步的改進(jìn)與完善。
簡易方程教學(xué)反思3
現(xiàn)行第九冊數(shù)學(xué)是新課程標(biāo)準(zhǔn)教材實(shí)施改革新內(nèi)容,其中的利弊在于:
1、教改方向有點(diǎn)聚向七年級的教學(xué)方法,意圖是與七年級的教學(xué)接軌,這種設(shè)計(jì)本來是一件好事,讓小學(xué)生盡快接受初中一年級(七年級)教學(xué)方法,并為七年級打下良好的學(xué)習(xí)基礎(chǔ)。
2、課程改革改在五年級第一學(xué)期就有點(diǎn)不夠恰當(dāng)了,因?yàn)槲迥昙壍谝粚W(xué)期既沒有學(xué)約分,更沒有學(xué)六年級的倒數(shù),這樣使教師教起來非常困難,學(xué)生對這個知識的掌握也十分艱難。如:解方程:20÷2X=10如果用舊知識來解答是非常容易的,是根據(jù)“除數(shù)=被除數(shù)÷商”,就可以求出2X。再根據(jù)“一個因數(shù)=積÷另一個因數(shù)”就可以求出X了。
而新教材的教法是方程兩邊同時×2X,先把方程左邊的2X消去,而20÷2X×2X從小學(xué)的算理上講,應(yīng)該是從左往右算,(在三至五年級學(xué)混合運(yùn)算都是這樣要求學(xué)生計(jì)算的)這樣就會使學(xué)生在心理上出現(xiàn)矛盾,很難接受這種算法;即使學(xué)生接受了這種算法,方程的右邊出現(xiàn)了10×2X,這時又要在方程的兩邊同時除以10,便得到2=2X,再把2X和2調(diào)換位置,成為2X=2,然后再方程兩邊同時除以2,才求出X=1,這種算法既費(fèi)時,對成績中等以下的學(xué)生又難理解,就會導(dǎo)致相當(dāng)部分學(xué)生對這部分知識落下,并對今后的學(xué)習(xí)會都產(chǎn)生厭學(xué)情緒,不利于小學(xué)生對知識的掌握,更激發(fā)不起學(xué)生學(xué)習(xí)的積極性。
3、在稍復(fù)雜的方程的內(nèi)容安排上也欠妥。在這一內(nèi)容上,學(xué)習(xí)解稍復(fù)雜的方程的方法和列方程解應(yīng)用題同時進(jìn)行,在同一節(jié)課要解決兩個對于小學(xué)生來說都是難點(diǎn)的學(xué)習(xí)內(nèi)容,至于教師是沒問題的,但對學(xué)生來說難度就大了,首先,前面所說的解方程是比較簡單的方程,相當(dāng)部分學(xué)生學(xué)得一塌糊涂,再進(jìn)行學(xué)習(xí)稍復(fù)雜的方程更難掌握。
其次,正是有稍復(fù)雜的方程解答方法不能完全掌握,在學(xué)生的心理上就有解不開的結(jié),所以對怎樣運(yùn)用好的方法去進(jìn)行列出解應(yīng)用題的方程,那就更難掌握,因此,有部分學(xué)生把這一知識采用的學(xué)習(xí)方法的放棄,這就不利于學(xué)生的學(xué)習(xí),更不能達(dá)到為七年級打好基礎(chǔ)的目的。
以上三點(diǎn)是本人在教簡易方程中感受最深的淺見,不知各位同行是否有這種感受,請各位同行多提這新教材好教學(xué)方法,本人樂意接受。謝謝!
簡易方程教學(xué)反思4
義務(wù)教育小學(xué)階段五年級數(shù)學(xué)上冊第五單元《簡易方程》在解簡易方程呈現(xiàn)五個例題。
其中例1以X+3=9為例,討論了X加減某一數(shù)的方程解法。教學(xué)重點(diǎn)是運(yùn)用等式的性質(zhì)1解方程,并引入方程的解與解方程兩個概念。如圖所示:
為了便于給出解方程全過程的直觀展示,例題中借助三幅天平演示圖,展現(xiàn)了解方程的完整思考過程,這一點(diǎn)值得稱道,對于學(xué)生來說,這樣的圖示剖析,有助于學(xué)生自我探究理解,學(xué)習(xí)解簡易方程,從而學(xué)會解簡易方程的方法。
但問題來了。在例1當(dāng)中沒有完整的解題過程示范,只有檢驗(yàn)過程的示范。如上圖所示。而完整的示范出現(xiàn)在例3,經(jīng)歷了例1運(yùn)用等式性質(zhì)1解方程,例2利用等式性質(zhì)2解方程,遞進(jìn)至例3完成方程轉(zhuǎn)化解方法(未知數(shù)位于減數(shù)、除數(shù)位置,屬逆向解方程)才有一個完整的`解方程的示范。如下圖所示:
從學(xué)習(xí)心理學(xué)來講,學(xué)生在接觸新知識點(diǎn)的第一印象極為重要,第一次學(xué)習(xí)新知,是由不知到知,由不懂到懂而邁出的重要第一步。這一步的踏出對學(xué)生而言異常重要。第一次是新的,大腦對新知的接受是處于興奮狀態(tài),此時的理解記憶刻痕是最深的,無論到的是直,是斜,一旦留下,再想更改那就難上加難。作為老師一定要重視學(xué)生的第一次接觸新知,“課上損失課外補(bǔ)”更是事倍功半。
學(xué)材的編排著實(shí)讓我有點(diǎn)撓頭,明明能夠一目了解,通過閱讀自學(xué)就能搞定的解方程規(guī)范,這樣一個基礎(chǔ)性的知識點(diǎn),非要放在例3才有完整呈現(xiàn),在實(shí)際的課堂教學(xué)中有點(diǎn)不得勁兒,也有些不符合學(xué)生學(xué)習(xí)的認(rèn)知規(guī)律。
簡易方程教學(xué)反思5
在本課教學(xué)中,我主要采用小組合作學(xué)習(xí),討論的方式,讓學(xué)生探究新知識,效果較好。
出示例題2,小組合作學(xué)習(xí),討論:①你是怎樣理解圖意的?②你是如何列方程的?③你是根據(jù)什么解方程的?④怎樣檢驗(yàn)方程的解是否正確?然后班交流討論,展示學(xué)生的練習(xí)。指名回答,說說自己的分析。你對他的分析有什么要問的嗎?教師總結(jié)解題關(guān)鍵。
教學(xué)例3時,讓學(xué)生觀察、分析,這道題與前面的練習(xí)題比較有什么區(qū)別?這道題可以怎樣解?(先小組交流后個人解答)學(xué)生找出解題關(guān)鍵,培養(yǎng)一題多解的習(xí)慣與能力。
最后讓學(xué)生做全課總結(jié):今天學(xué)習(xí)了什么知識?解方程的關(guān)鍵是什么?
充分練習(xí),進(jìn)行思維訓(xùn)練,設(shè)計(jì)有趣的習(xí)題“幫小兔找家”:4x-12=203x=15x+7=152x+3×2=16
18-2x=215÷3+4x=25
鞏固知識,激發(fā)興趣。
簡易方程教學(xué)反思6
《解簡易方程》教學(xué)反思數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》改變了小學(xué)階段解方程方法的教學(xué)要求,采用了等式的性質(zhì)來教學(xué)解方程。現(xiàn)將解方程的新舊方法舉例如下:
老方法:
x + 4 = 20
x = 20-4
依據(jù)運(yùn)算之間的關(guān)系:一個加數(shù)等于和減另一個加數(shù)。
新方法:
x + 4 = 20
x + 4-4=20-4
依據(jù)等式的基本性質(zhì)1:等式兩邊加上或減去相等的數(shù),等式不變。
改革的原因(摘自教學(xué)參考書):
新教材編寫者如此說明:長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù)。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接。
從這我們不難看出,為了和中學(xué)教學(xué)解方程的方法保持一致,是此次改革的主要原因。
那么,小學(xué)生學(xué)這樣的方法,實(shí)際操作中會出現(xiàn)什么樣的情況?這樣的改革有沒有什么問題? 在我的教學(xué)過程中真的出現(xiàn)了問題 。
1.無法解如a-x=b和ax=b此類的方程
新教材認(rèn)為,利用等式基本性質(zhì)解方程后,解象x+a=b與x-a=b一類的方程,都可以歸結(jié)為等式兩邊同時減去(加上)a;解如ax=b與xa=b一類的方程,都可以歸結(jié)為等式兩邊同時除以(乘上)a。這就是所謂相比原來方法,思路更為統(tǒng)一的優(yōu)越性。然而,它有一個相應(yīng)的調(diào)整措施值得我們注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小學(xué)生還沒有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,利用等式的基本性質(zhì)解a-x=b,方程變形的過程及算理解釋比較麻煩;而ax=b的方程,因?yàn)槠浔举|(zhì)是分式方程,依據(jù)等式的基本性質(zhì)解需要先去分母,也不適合在小學(xué)階段學(xué)習(xí)。
我認(rèn)為為了要運(yùn)用等式基本性質(zhì),卻回避掉了兩類方程,這似乎不妥。更重要的是,回避這兩類方程,新教材認(rèn)為并不影響學(xué)生列方程解決實(shí)際問題。因?yàn)楫?dāng)需要列出形如a-x=b或ax=b的方程時,總是要求學(xué)生根據(jù)實(shí)際問題的數(shù)量關(guān)系,列成形如x+b=a或bx=a的方程。但我認(rèn)為,這樣的處理方法,有時更會無法避免地直接和方程思想發(fā)生矛盾。
如3千克梨比5千克桃子貴0.5元。梨每千克2.5元,桃子每千克多少元?
合理的做法應(yīng)是設(shè)桃子每千克X元,從順向思考,列出方程為2.53-5X=0.5。然而,按新教材的編排,因?yàn)閷W(xué)生現(xiàn)在不會解這樣的方程,所以要根據(jù)數(shù)量關(guān)系,轉(zhuǎn)列成5X+0.5=2.53之類的方程。又如:課本第62頁中的爸爸比小明大28歲,小明Х歲,爸爸40歲。很多學(xué)生根據(jù)爸爸比小明大28歲列出40-Х=28,可是無法求解,所以又轉(zhuǎn)成Х+28=40。
很明顯,第二個方程是和方程思想的基本理念相違背的。我們知道,方程最大的意義,就是讓未知數(shù)參與進(jìn)式子,使考慮問題更加直接自然。為實(shí)現(xiàn)這個目標(biāo),很重要的一點(diǎn),就是列式時應(yīng)盡量順向思考,以降低思考的難度。這是體現(xiàn)方程方法的優(yōu)越性必然要求。事實(shí)上,如果學(xué)生能夠列成5X+0.5=2.53 Х+28=40那就說明他已經(jīng)非常熟悉其中的數(shù)量關(guān)系了,此時,用算術(shù)方法即可,哪還有列方程來解的必要呢?我們又怎談引導(dǎo)學(xué)生認(rèn)識方程的優(yōu)越性呢?
我們不難看出,根據(jù)現(xiàn)實(shí)情境列方程解決問題,X當(dāng)作減數(shù)、當(dāng)作除數(shù),應(yīng)當(dāng)是很常見、很必要的現(xiàn)象。要學(xué)生學(xué)會解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會顯得片面和狹隘。
2.解方程的書寫過程太繁瑣
教材要求,在學(xué)生用等式基本性質(zhì)解方程時,方程的變形過程應(yīng)該要寫出來,等到熟練以后,再逐步省略。這樣的要求,在實(shí)際操作中,帶來了書寫上的繁瑣。
因?yàn)橛玫仁交拘再|(zhì)解方程,每兩步才能完成一次方程的變形。這相對于簡單的方程,尚沒什么,但對一些稍復(fù)雜的方程,其解的過程就顯得太繁瑣了
從這兩個方面來看,小學(xué)里學(xué)習(xí)等式的基本性質(zhì),并運(yùn)用它來解方程,在實(shí)際操作中,也存在許多的現(xiàn)實(shí)問題。那么,如果說用算術(shù)思路解方程對初中學(xué)習(xí)有負(fù)遷移,需要改革,現(xiàn)在改成用等式基本性質(zhì)解方程,同樣出現(xiàn)問題,那我們又如何是好呢?
簡易方程教學(xué)反思7
《解方程》是人教課標(biāo)版小學(xué)數(shù)學(xué)五年級上冊第四單元內(nèi)容,本節(jié)課是在學(xué)生學(xué)習(xí)了用字母表示數(shù)和方程的基礎(chǔ)上進(jìn)行教學(xué)的,新課程的解方程一改以往的由加減乘除各部分之間的關(guān)系的引入方法,運(yùn)用更能讓學(xué)生明白的天平平衡的原理來引入,《解簡易方程》教學(xué)反思。解題的基本原理從未改變——等式的基本性質(zhì),即:方程的兩邊同時加上或減去相同的數(shù),除以或乘以同一個不為零的數(shù),方程的兩邊仍相等。
這節(jié)課內(nèi)容不是新內(nèi)容,但方法卻是新方法,我認(rèn)為設(shè)計(jì)教學(xué)時應(yīng)將“方程的解”和“解方程”這兩個概念放到例題1的后面引入,能使學(xué)生對概念理解更充分,印象更深刻。
教學(xué)中我先利用課件演示了天平兩端同時加上或減去同樣的重量,同時擴(kuò)大或縮小相同倍數(shù),天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例1,讓學(xué)生列出方程x+3=9,用課件演示x+3個方塊=9個方塊,提問:“如果要稱出x有多種,改怎么辦?”,引導(dǎo)學(xué)生思考,只要將天平兩端同時減去3個方塊,天平仍平衡,得到一個x相當(dāng)于6個方塊,從而得到x=6。你能把稱的過程用算式表示出來嗎?大部分學(xué)生快速的寫出了我想要的答案:x+3-3=9-3,于是我問:為什么方程兩邊要同時減去3,而不減去其它數(shù)呢?學(xué)生沉默,終于有兩雙小手舉起來了,“為了得到一個x得多少”,我又強(qiáng)調(diào)了一遍,我們的目標(biāo)是求一個x的多少,所以要把多余的3減去,為了不耽誤更多的時間,我沒有繼續(xù)深入探究。接下來教學(xué)例2,同樣我利用天平原理幫助學(xué)生理解,在學(xué)生說出要把天平兩端平均分成3分,得到每份是6的基礎(chǔ)上,我用課件演示了分的過程,讓學(xué)生把演示過程寫出來,從而解出方程,教學(xué)反思《《解簡易方程》教學(xué)反思》。在此基礎(chǔ)上我引導(dǎo)學(xué)生總結(jié)天平保持平衡的道理,得到等式的基本性質(zhì):方程的兩邊同時加上或減去相同的數(shù),除以或乘上同一個不為0的數(shù),方程兩邊仍然相等。當(dāng)學(xué)生的解題方法得到了教師的肯定,讓學(xué)生明白這種解題方法的優(yōu)缺點(diǎn)。培養(yǎng)學(xué)生的創(chuàng)新能力和自主學(xué)習(xí)的能力讓學(xué)生成為課堂的主體,教師充分發(fā)揮主導(dǎo)作用。
按理說,只要稍加類推,學(xué)生應(yīng)該能掌握方程的解法。但接下來的練習(xí)卻大大出人意料,除了少數(shù)成績較好的學(xué)生能按照要求完成外,大部分幾乎不會做,甚至動不了筆。問題出在哪里?經(jīng)過認(rèn)真反思總結(jié)如下:
一是從天平過渡到方程,類推的過程學(xué)生理解不透,天平兩端同時減去3個方塊,就相當(dāng)于方程兩邊同時減去3,這個過程寫下來時,要強(qiáng)調(diào)左右兩邊原來狀態(tài)保持不變,要原樣寫下來,如果這樣的話就不會造成有的學(xué)生不會格式;
二是對為什么要減去3討論不夠,雖然有學(xué)生回答上來了,我應(yīng)該能覺察出學(xué)生理解有困難,課件和天平能讓學(xué)生懂得方程兩邊要同時減去相同的數(shù),至于為什么這里要減去3卻還似懂非懂,如果當(dāng)時舉例說明也許很有效果,比如:x-3=6,我們該怎么辦呢?學(xué)生通過對比討論,就會發(fā)現(xiàn)我們要求出一個x是多少,就要根據(jù)方程的具體情況,若比x多余的就要減去,不足x的就要補(bǔ)足,這樣效果肯定好些。
三是備學(xué)生環(huán)節(jié)出現(xiàn)差錯,這部分內(nèi)容應(yīng)該不難,但學(xué)生的現(xiàn)有基礎(chǔ)是確定教學(xué)方法的基礎(chǔ),從教學(xué)效果看,我明顯做的不夠。
四是教學(xué)內(nèi)容確定不恰當(dāng),本來我是想,上公開課要有一定的容量,就把例1和例2放在一起教學(xué),既有加減,又有乘除的,只教學(xué)加法和乘法的,減法和除法的解法,讓學(xué)生通過遷移類推的方法的解決。由于我班學(xué)生是本期從各個地方轉(zhuǎn)來的,基礎(chǔ)參差不齊,而且整體水平較差,因此安排兩個例題有難度。
簡易方程教學(xué)反思8
教學(xué)內(nèi)容:教材第65頁例1。練習(xí)十二的第1——3題。
教學(xué)目標(biāo):
1.學(xué)生能根據(jù)等式的基本性質(zhì)解形如ax±b=c的方程,初步學(xué)會列方程解決一些簡單的實(shí)際問題。
2.培養(yǎng)學(xué)生抽象概括的能力,發(fā)展學(xué)生思維靈活性,進(jìn)一步提高學(xué)生的分析能力。
3.學(xué)生感受數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系,培養(yǎng)學(xué)生的數(shù)學(xué)運(yùn)用意識與規(guī)范書寫和自覺檢驗(yàn)的習(xí)慣。
教學(xué)重點(diǎn):掌握解形如ax±b=c方程的解法。
教學(xué)難點(diǎn):正確找出數(shù)量間的相等關(guān)系,列出方程。
教學(xué)過程:
一、復(fù)習(xí)鋪墊:
1.解方程。
x-2.5=10 0. 4x=12 3.2+x=40
2.根據(jù)下列句子說出其數(shù)量間相等的關(guān)系。
1)女生比男生人數(shù)的3倍少10人。
2)這個月比上個月水電費(fèi)的2倍多200元。
二、情景導(dǎo)入:
同學(xué)們見過足球吧?(出示1個足球)
(出示例1)一起觀察掛圖,問:圖中的哪些信息是解決“共有多少塊黑色皮?”這個問題所需要的?
三、探究新知:
1.師:要想知道黑色皮有多少塊,就必須了解黑色皮的塊數(shù)和白色皮的塊數(shù)有什么等量關(guān)系?
老師可以用線路圖表示幫助學(xué)生分析題中的等量關(guān)系。
2.請學(xué)生依據(jù)等量關(guān)系式列出方程;還有另外的學(xué)生找到另外的等量關(guān)系式,列方程。
3.師:大家依據(jù)不同的等量關(guān)系列出較復(fù)雜的方程,怎樣解答呢?今天我們就來學(xué)習(xí)“稍復(fù)雜的方程”。(板書課題)
4.探究求解過程。
1)生:我們可以用“黑色皮的塊數(shù)×2-4=白色皮的塊數(shù) ”這個等量關(guān)系式列方程,可以怎么解呢?
2)強(qiáng)調(diào):把2x看作一個整體,先求出2x等于多少,再求出x等于多少。
3)最后求出 x=12,還要檢驗(yàn)12是不是這個方程的解。(學(xué)生在黑板上展示解方程的步驟)
4)2x-20=4 這樣的方程能轉(zhuǎn)化成我們原來學(xué)過的簡單的方程再解答嗎?(在黑板上展示方程的解法步驟)
5)師:同學(xué)們真了不起,這幾個同學(xué)解答較復(fù)雜的方程都是先轉(zhuǎn)化成簡單的方程,然后用學(xué)過的知識去解決。請同學(xué)們不要忘記,最后要檢驗(yàn)結(jié)果是否正確。
5.大家在用方程解決問題的時候,有什么共同特點(diǎn)嗎?步驟是什么呢?
(生答完特點(diǎn)后,師生共同總結(jié)列方程解決問題的步驟:
① 弄清題意,找出未知數(shù)用x表示;
② 分析、找出數(shù)量間的相等關(guān)系,列方程;
③ 解方程;
④ 檢驗(yàn)并寫答語。)
四、鞏固拓展:
1.p66 第1題 解下列方程 3x+6=18 2x-7.5=8.5 16+8x=40 4x-3x9=29
2.p66第2題
五、全課總結(jié):
本節(jié)課你有什么收獲?
作業(yè):p66 3
板書設(shè)計(jì): 稍復(fù)雜的方程
例1 解:設(shè)共有x塊黑色皮。
黑色皮塊數(shù)x2-4=白色皮塊數(shù)
2x-4=20
2x-4+4=20+4
2x=24
2x÷2=24÷2
x=12
答:共有12塊黑色皮。
課后小記:這節(jié)課由于有了前面的幾節(jié)課對等量關(guān)系的訓(xùn)練,在根據(jù)老師出示的線段圖,學(xué)生很快就找到了等量關(guān)系,列出了方程,方程的求解過程就是本節(jié)課的重點(diǎn)內(nèi)容,一定要反復(fù)的請學(xué)生說,達(dá)到都會的結(jié)果。
簡易方程教學(xué)反思9
長期以來,小學(xué)教學(xué)簡易方程時,方程變形的依據(jù)總是加減運(yùn)算的關(guān)系或乘除運(yùn)算之間的關(guān)系,這實(shí)際上是用算術(shù)的思路求未知數(shù),解簡易方程教學(xué)反思。到了中學(xué)又要另起爐灶,引入等式的基本性質(zhì)或方程的同解原理來教學(xué)解方程。小學(xué)的思路及其算法掌握得越牢固,對中學(xué)代數(shù)起步教學(xué)的負(fù)遷移就越明顯。因此,現(xiàn)在根據(jù)《標(biāo)準(zhǔn)》的要求,從小學(xué)起就引入等式的基本性質(zhì),并以此為基礎(chǔ)導(dǎo)出解方程的方法。這就較為徹底地避免了同一內(nèi)容兩種思路、兩種算理解釋的現(xiàn)象,有利于加強(qiáng)中小學(xué)數(shù)學(xué)教學(xué)的銜接,教學(xué)反思《解簡易方程教學(xué)反思》。通教材的老師也主張用等式的基本性質(zhì)解方程。
在我的教學(xué)過程中卻出現(xiàn)了這樣的問題 ,利用等式的基本性質(zhì)解形如x+a=b與x-a=b, ax=b與x÷a=b一類的方程,學(xué)生方法掌握起來比較簡單。但寫起來比較繁瑣。然而遇到a-x=b、a÷x=b的方程時,由于小學(xué)生還沒有學(xué)習(xí)正負(fù)數(shù)的四則運(yùn)算,如果利用等式的基本性質(zhì)解,方程變形的過程及算理解釋比較麻煩;但是在教學(xué)過程中我們不可避免地會遇到根據(jù)現(xiàn)實(shí)情境從順向思考列出X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程,要學(xué)生學(xué)會解這些方程,是正常的教學(xué)要求,這是不應(yīng)該回避的,否則,我們的教學(xué)就會顯得片面和狹隘。于是,我又要求學(xué)生遇到X當(dāng)作減數(shù)、當(dāng)作除數(shù)的方程時,要求學(xué)生會用減法和除法各部分之間的關(guān)系來做。但是,我發(fā)現(xiàn)這讓有些孩子無所適從。我現(xiàn)在感到很困惑,我們到底怎樣做才是合理得呢?懇請各位老師指教。
簡易方程教學(xué)反思10
本節(jié)課例題的教學(xué)注意利用三個等量關(guān)系列出三個不同的方程,讓學(xué)生自主討論、列出,并利用學(xué)過的解方程知識嘗試解方程。注意讓學(xué)生比較選擇,讓學(xué)生明了順著題意列方程更簡潔。注意讓學(xué)生總結(jié)用方程解決問題的步驟,引導(dǎo)總結(jié)出五大步驟后,進(jìn)一步引導(dǎo)出每一個步驟取一個字,進(jìn)而總結(jié)為“設(shè)、找、列、解、驗(yàn)”,比數(shù)學(xué)課本上總結(jié)的步驟更加簡潔容易記憶。
在列方程解決實(shí)際問題的教學(xué)過程中,教師教的重點(diǎn)和學(xué)生學(xué)的重點(diǎn),不在于“解”,而在于“學(xué)解”。注重的是解決問題的過程。也就是說,要讓學(xué)生經(jīng)歷尋找實(shí)際問題中數(shù)量之間的相等關(guān)系并列方程解答的全過程。
本節(jié)課的教學(xué)設(shè)計(jì),注重讓學(xué)生分析條件、問題,讓學(xué)生首先理解題意,然后讓學(xué)生通過分析、交流、討論等活動,找出等量關(guān)系,充分展示他們的思維過程,發(fā)展思維能力。 應(yīng)用題的教學(xué)難點(diǎn)就是:如何引導(dǎo)學(xué)生理解題意,列出需要的數(shù)量關(guān)系式或等量關(guān)系式。在這個過程中,重要的并不是展示學(xué)生的方法如何多,因?yàn)榻鉀Q辦法是可以舉一反三的,重要的應(yīng)該是引導(dǎo)學(xué)生如何通過分析,找出等量關(guān)系式的過程。同時,在分析過程中,讓學(xué)生掌握多種辦法來分析。如通過抓關(guān)鍵句、關(guān)鍵詞、關(guān)鍵字列等量關(guān)系式。
本節(jié)課教學(xué)設(shè)計(jì)注意總結(jié)回顧方法,讓學(xué)生總結(jié)用方程解決問題的步驟,引導(dǎo)總結(jié)出五大步驟后,進(jìn)一步引導(dǎo)出每一個步驟取一個字,進(jìn)而總結(jié)為“設(shè)、找、列、解、驗(yàn)”,比數(shù)學(xué)課本上總結(jié)的步驟更加簡潔容易記憶。
在小組合作方面,本節(jié)課主要在分析等量關(guān)系,根據(jù)等量關(guān)系列方程兩個環(huán)節(jié)給孩子們小組合作探討交流的時間。縱觀本節(jié)課小組合作有利于學(xué)生理解掌握題中的數(shù)量關(guān)系,找出等量關(guān)系,根據(jù)等量關(guān)系列方程。我們學(xué)校本學(xué)期開展的是基于導(dǎo)學(xué)案學(xué)習(xí)基礎(chǔ)上的小組合作學(xué)習(xí),導(dǎo)學(xué)案有三分之二的學(xué)生能基本完成,三分之一的學(xué)生基本不做、做的很少、干脆不做。導(dǎo)學(xué)案的學(xué)習(xí)非常有利于學(xué)生的學(xué)習(xí),能加快上課的節(jié)奏,加大練習(xí)量,但對于不預(yù)習(xí)、不做導(dǎo)學(xué)案的學(xué)生上課效果大打折扣。基于導(dǎo)學(xué)案學(xué)習(xí)出現(xiàn)的現(xiàn)象是“優(yōu)者更優(yōu)”,“弱者被動挨打”“積弱者更弱”。關(guān)鍵是怎樣調(diào)動學(xué)生積極性,怎樣讓家長配合老師,讓學(xué)生做好提前預(yù)習(xí),讓學(xué)生提前預(yù)習(xí)好導(dǎo)學(xué)案。這樣才能目的效果兼收。
簡易方程教學(xué)反思11
“簡易方程的整理與復(fù)習(xí)”是人教版數(shù)學(xué)五年級上學(xué)期教學(xué)內(nèi)容,本課的教學(xué)目標(biāo)是通過練習(xí)使學(xué)生進(jìn)一步加強(qiáng)對方程意義的理解,知道方程的解與解方程的區(qū)分,等式與方程的區(qū)分。并能根據(jù)四則運(yùn)算之間的關(guān)系解方程。能靈活根據(jù)數(shù)量間的關(guān)系選擇方程或算式進(jìn)行解答。教學(xué)重點(diǎn)是理解方程的意義,并能正確解方程。教學(xué)難點(diǎn)是能靈活根據(jù)數(shù)量間的關(guān)系選擇方程或算式進(jìn)行解答。在教學(xué)本課時,我主要是通過練習(xí),對簡易方程的有關(guān)概念進(jìn)行梳理,使得學(xué)生進(jìn)一步加強(qiáng)理解和應(yīng)用,達(dá)到復(fù)習(xí)課的教學(xué)要求。在練習(xí)時,我以“闖關(guān)”的形式進(jìn)行,教學(xué)設(shè)計(jì)新穎,倍受學(xué)生喜歡。結(jié)束后,學(xué)生的掌握情況很好,興趣也很高。但如果這節(jié)課能設(shè)計(jì)一些更有坡度的練習(xí),這樣就能在課堂上發(fā)現(xiàn)學(xué)生的“錯”,在課堂上“糾錯”。那么這節(jié)課會更豐滿,學(xué)生學(xué)習(xí)到的知識會更全面,效果就更好了。要達(dá)得這一程度,我還要繼續(xù)加強(qiáng)自身學(xué)習(xí),多鉆研多思考,使自己的課堂能成為吸引學(xué)生的“游樂場”。
簡易方程教學(xué)反思12
今天早上在庫溝小學(xué)聽了張福華老師的《簡易方程的整理和復(fù)習(xí)》這節(jié)復(fù)習(xí)課。這是我第一次聽復(fù)習(xí)課,以往只是從教學(xué)策略上了解復(fù)習(xí)課的教學(xué)流程,當(dāng)今天真真正正的傾聽了一節(jié)復(fù)習(xí)課后,感受頗深,所學(xué)甚多,只奈何有言吐不出,下面就簡單說一些聽完這節(jié)課的體會。
首先,張老師的語言簡練干脆,善于利用名言名句。
在課的開始,大屏幕上就展示出了俄國烏申斯基的一句話:“裝著一些片段的,沒有聯(lián)系的知識的頭腦,就像一個亂七八糟的倉庫,主人從那里是什么也找不出來的。”這句話的展示,讓學(xué)生一下子就了解了整理的重要性,也了解了這節(jié)課的目的所在。在回顧整理,構(gòu)建網(wǎng)絡(luò)這一環(huán)節(jié),張老師在讓學(xué)生自己看課本例題的知識點(diǎn)時又說了一句“不動筆墨不讀書”,提醒了學(xué)生看例題時可以適時的進(jìn)行批畫,將遺忘的知識點(diǎn)突出顯示出來。在課的最后又課件展示了韋達(dá)和愛因斯坦的名言警句。
其次,目錄歸納知識點(diǎn),清楚明了。
我想所有的老師都會頭疼復(fù)習(xí)某一單元或某一冊課本時知識點(diǎn)的歸納,只奈何沒有更好的方法可以把所有知識點(diǎn)系統(tǒng)的展現(xiàn)給學(xué)生。本節(jié)課張老師的方法讓我眼前一亮,目錄展示法,讓所有知識點(diǎn)的區(qū)別和聯(lián)系清楚的擺了出來,方便了學(xué)生的回顧和整理。
最后,練習(xí)充實(shí)有趣,層次分明。
闖關(guān)形式的練習(xí)提高了學(xué)生的積極性,激發(fā)了學(xué)生的好勝心。在一,二,三的闖關(guān)中,依次將基礎(chǔ)知識點(diǎn),重難點(diǎn)進(jìn)行了練習(xí),穩(wěn)固。學(xué)生在回答闖關(guān)的答案時,張老師經(jīng)常會問一個為什么,引導(dǎo)學(xué)生對知識點(diǎn)進(jìn)行再回顧。例如,在一名學(xué)生回答bX8等于8b時,問為什么不是b8?在學(xué)生回答aXa=a的平方時,問為什么不是2a?看似不經(jīng)意的詢問,卻鞏固了細(xì)微處的知識點(diǎn)。
當(dāng)然,張老師的課還有許多值得我學(xué)習(xí)的地方。例如,創(chuàng)設(shè)了有效地復(fù)習(xí)情景,親和力強(qiáng),能及時喚起回憶,將零散的知識系統(tǒng)化等等。通過這節(jié)課,讓我更清楚的了解了復(fù)習(xí)課的教學(xué)模式,對以后上好復(fù)習(xí)課有了更多的信心。
簡易方程教學(xué)反思13
很多時候,我們大人都喜歡用方程來解題,這固然是因?yàn)榈搅酥袑W(xué)大量學(xué)習(xí)了各種各樣的方程,一元一次,一元二次,二元一次等等,但還有一個更重要的原因就是方程對解題思路的解放,列算式解決實(shí)際問題時,解題思路常常迂回曲折,而他從根本上讓學(xué)生脫離了繁瑣的思路分析,而列方程解決實(shí)際問題,解題思路往往直截了當(dāng),降低了思維難度,它讓學(xué)生從一個簡單的思路——找等量關(guān)系來解題。所以說,這個單元的知識如何教好,從而讓學(xué)生學(xué)好是非常重要的。
一、用字母表示數(shù)要注意對數(shù)量關(guān)系的理解
用字母表示數(shù)是學(xué)生學(xué)習(xí)代數(shù)初步知識的起步。在算術(shù)里,人們只對一些具體的、個別的數(shù)量關(guān)系進(jìn)行研究,引入用字母表示數(shù)后,就可以表達(dá)、研究具有更普遍意義的數(shù)量關(guān)系。可以說,學(xué)習(xí)代數(shù)就是從學(xué)習(xí)用字母表示數(shù)開始的。
對小學(xué)生來說,從具體事物的個數(shù)抽象出數(shù)是認(rèn)識上的一個飛躍,而由具體的、確定的數(shù)過渡到用字母表示抽象的、可變的數(shù),更是認(rèn)識上的一個飛躍。而且,在用字母表示未知數(shù)的基礎(chǔ)上,使學(xué)生解決實(shí)際問題的數(shù)學(xué)工具,從列出算式解發(fā)展到列出方程解,這又是數(shù)學(xué)思想方法認(rèn)識上的一次飛躍,它將使學(xué)生運(yùn)用數(shù)學(xué)知識解決實(shí)際問題能力提高到一個新的水平。而在老師們的教學(xué)實(shí)踐中,由于在進(jìn)行用方程解題時格式非常重要,因此往往老師們教學(xué)時都會特別強(qiáng)調(diào)格式。可是從學(xué)生的后續(xù)學(xué)習(xí)來看,我慢慢發(fā)現(xiàn),其實(shí)在教學(xué)這一部分知識時,老師要注重學(xué)生對數(shù)量關(guān)系的理解,也就是說要加強(qiáng)對學(xué)生的用含字母的式子表示數(shù)量的訓(xùn)練,也就是寫代數(shù)式的訓(xùn)練。因?yàn)檫@是列方程的基礎(chǔ)。所以,在這里教師一定要向?qū)W生強(qiáng)調(diào)并反復(fù)練習(xí)用含有字母的式子表示數(shù)量,讓學(xué)生明白以往學(xué)習(xí)的所有數(shù)量關(guān)系在用含有字母的式子表示數(shù)量中都能用到。如:原來有100元,用掉X元,一樣的要用減法求還剩下多少錢,買了3個練習(xí)本,每個A元,一樣的用乘法來求一共要多少錢。讓學(xué)生在這樣的大量的練習(xí)和強(qiáng)化中,知道含有字母的式子的數(shù)量關(guān)系和以前是一樣的,只是現(xiàn)在所用的符號不一樣,其實(shí),從廣義上來講,字母是一種符號,數(shù)字也是一種符號。
二、注重方程的意義的教學(xué)。
方程是什么,教材中是這樣說的,含有未知數(shù)的等式叫做方程。其實(shí),這只是從方程的表現(xiàn)形式來給方程下定義。也就是說,從表象上來說,如果一個式子是一個等式,并且含有未知數(shù),我們就說這個式子是方程。但是,從數(shù)學(xué)的本質(zhì)上來說,方程的意義是什么呢?我們每個人都能夠熟練地列方程解決問題,那么,在你列方程解決問題時,你每次抓住的核心是什么呢?是等量關(guān)系。所以,方程最本質(zhì)的教學(xué)意義應(yīng)是同一個量(或相等的量)用不同的形式去表達(dá)。但很多時候,老師們在教學(xué)方程的意義時,往往只研究了方程的表面形式,也就是書上所說的:含有未知數(shù)的等式叫方程,所以,老師們一般都是從等式入手,讓學(xué)生在認(rèn)識等式的基礎(chǔ)上引入未知數(shù),然后告訴學(xué)生,象這樣的含有未知數(shù)的等式叫方程。這樣一節(jié)課教下來,學(xué)生除了會判斷一個關(guān)系式是不是方程,還知道了什么呢?這樣的學(xué)習(xí)對于后面的列方程解決問題真的有幫助嗎?我想,每個人靜下心來想想,應(yīng)該都會有答案。
三、解方程的教學(xué)時不要被以前的教材編排所影響。
新教材對于解方程的安排是變動非常大的。以前我們是根據(jù)四則運(yùn)算各部分之間的關(guān)系來解方程。一開始時,還不和學(xué)生說解方程,叫求未知數(shù)X。而現(xiàn)在的教材編排時是根據(jù)等式的性質(zhì)來解,當(dāng)然,在教材上并沒有歸納出等式的性質(zhì),畢竟,在學(xué)生的小學(xué)階段,只要讓學(xué)生明白,在等式的兩邊同時加、減、乘和除以同一個數(shù),等式仍然成立,這并不是完整意義上的等式的性質(zhì)。從學(xué)生的學(xué)習(xí)上來看,我覺得學(xué)生是比較容易接受這種方法的,特別是比較簡單的方程,學(xué)生只要明白了要把誰抵消,怎么抵消,基本上問題不大。不過,到了稍微復(fù)雜的方程出現(xiàn)了一些問題,這也許是我在教學(xué)這一部分內(nèi)容時,因?yàn)榭偸强紤]到學(xué)生不喜歡列方程(以往的學(xué)生都有這個問題,可能就是覺得方程的格式繁瑣,好像步驟也不少,學(xué)生總不喜歡),所以,我就想怎么讓學(xué)生少寫點(diǎn)字,所以,在具體的書寫格式和步驟上,和教材稍微有點(diǎn)不同,我沒有象教材那樣寫出怎樣應(yīng)用等式的性質(zhì)的那一步,而是讓學(xué)生直接寫出這一步的結(jié)果,以至于到了后面,有部分學(xué)生就出現(xiàn)了一些問題,特別是象5(X+3)=55這樣的方程,學(xué)生掌握得比較差,也可能是學(xué)生在用含有字母的式子表示數(shù)量時,還是沒有很好地建立這樣的一個式子是一個整體,表示一個數(shù)量這樣的概念,盡管也進(jìn)行了一些強(qiáng)調(diào)。另一個方面就是具體的步驟可能也對學(xué)生有影響,所以,我個人認(rèn)為,可能讓學(xué)生按照書上的步驟來寫盡管麻煩一點(diǎn),但對于學(xué)生理清思路可能更有幫助。
總的來說,我覺得簡易方程這個單元,只要讓學(xué)生有很好地用字母或含有字母的式子表示數(shù)的基礎(chǔ),再加上對方程的本質(zhì)意義有清晰的理解,知道怎樣解方程,其他的應(yīng)該都不是問題,畢竟,上面的這些都是為列方程解決問題打基礎(chǔ)。基礎(chǔ)打好了,后面的問題就都能能迎刃而解了。
簡易方程教學(xué)反思14
在教現(xiàn)行人教版九年制義務(wù)教育小學(xué)數(shù)學(xué)第九冊《簡易方程》時,發(fā)現(xiàn)現(xiàn)行教材與以往版本不同:
以往的教法是利用“兩個加數(shù)相加,求一個加數(shù)就用和減去另一個加數(shù),即:加數(shù)=和-加數(shù);兩個因數(shù)相乘,求一個因數(shù)就用積除以另一個因數(shù),即:因數(shù)=積÷因數(shù)”;
現(xiàn)行的教法和初中類似,即:解方程時利用方程兩邊同時加上或減去一個數(shù)或同時乘以或除以一個不為零的數(shù)方程兩邊的值不變,但具體解題中與初中不同的是不提移項(xiàng)與合并同類項(xiàng),思想方法卻是相同的。
在教學(xué)中發(fā)現(xiàn)小學(xué)生對這種方法掌握較困難,主要表現(xiàn)在:
第一,用字母表示數(shù)不好接受,不易理解,也不習(xí)慣;
第二,用代數(shù)式表示一個得數(shù)或結(jié)果不理解;
第三,字母與數(shù),字母與字母之間的簡單運(yùn)算不理解,例如:a2=a×a,2a=a+a,用x-5表示一個數(shù)。
我們知道算式思維與方程思維是兩種不同的思考方法,在一些復(fù)雜的問題中用算式很難解出,用方程卻簡單的多,現(xiàn)行小學(xué)教材中有提升方程教學(xué)的意思,旨在培養(yǎng)學(xué)生的思考能力,便于與初中銜接。
教學(xué)實(shí)踐中我們發(fā)現(xiàn)通過練習(xí)學(xué)生還是可以掌握的很好的。
簡易方程教學(xué)反思15
本課的教學(xué)重點(diǎn)是感悟用字母表示數(shù)的意義,能用含有字母的式子表示簡單的數(shù)量關(guān)系。我由視頻導(dǎo)入,通過撲克牌,讓學(xué)生自主發(fā)現(xiàn),字母可以表示數(shù),并在一定的情境中表示一個確定的數(shù)。提出:新學(xué)習(xí)的內(nèi)容里面的字母還表示一個確定的數(shù)嗎?讓學(xué)生帶著這樣一個疑問進(jìn)入新課。
在教學(xué)的整個過程中,我以學(xué)生感興趣的哆啦A夢和時光機(jī)貫穿始終。兒歌這一環(huán)節(jié)讓學(xué)生再次感受用字母表示數(shù)的優(yōu)越性。介紹數(shù)學(xué)家韋達(dá),讓學(xué)生感受悠久的數(shù)學(xué)文化。最后欣賞生活中的字母圖片,讓學(xué)生感受數(shù)學(xué)來源于生活,并服務(wù)于生活。
整個課堂趣味性十足,環(huán)節(jié)顯得不那么枯燥。但也有不足之處:
(1)在讓學(xué)生用一個式子表示出爸爸的年齡時,我提的問題不具有引導(dǎo)性。所以,我在巡視的時候,能列出式子的同學(xué)很少。
(2)在練習(xí)這一環(huán)節(jié),我只關(guān)注了學(xué)生做題的結(jié)果,忽略了學(xué)生做題的過程。應(yīng)該讓他們自己說一說做題的思路,過程。
(3)在小結(jié)的時候,我提的問題有點(diǎn)抽象,不夠直白,學(xué)生不太明白什么意思,所以很少有學(xué)生能答上來。
【簡易方程教學(xué)反思】相關(guān)文章:
簡易方程教學(xué)反思12-26
簡易方程教學(xué)反思【范文】12-25
簡易方程教學(xué)反思15篇12-26
簡易方程教學(xué)反思(15篇)12-26
簡易方程教學(xué)反思(集錦15篇)12-26
簡易方程教學(xué)反思范文12篇12-26
簡易方程教學(xué)反思范文【三篇】12-25
解簡易方程說課稿11-22
解簡易方程數(shù)學(xué)課件05-04