北師大版六年級《正比例》的教學設(shè)計(通用10篇)
作為一名無私奉獻的老師,可能需要進行教學設(shè)計編寫工作,借助教學設(shè)計可以促進我們快速成長,使教學工作更加科學化。寫教學設(shè)計需要注意哪些格式呢?下面是小編幫大家整理的北師大版六年級《正比例》的教學設(shè)計,僅供參考,希望能夠幫助到大家。
六年級《正比例》的教學設(shè)計 1
【教學目標】
1、使學生理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。
2、培養(yǎng)學生概括能力和分析判斷能力。
3、培養(yǎng)學生用發(fā)展變化的觀點來分析問題的能力。
【教學重難點】
重點:
成正比例的量的特征及其斷方法。
難點:
理解兩個變量之間的比例關(guān)系,發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量之間的變化規(guī)律。
【教學過程】
一、四顧舊知,復習鋪墊
商店里有兩種包裝的襪子,一種是5雙一包的,售價為25元,一種是8雙一包的,售價為32元。哪種襪子更便宜?
學生獨立完成后師提問:你們是怎樣比較的?
生:我先求出每種襪子的單價,再進行比較。
師:你是根據(jù)哪個數(shù)量關(guān)系式進行計算的?
生:因為總價=單價×數(shù)量,所以單價=總價÷數(shù)量。
師:如果單價不變,商品的總價和數(shù)量的變化有什么規(guī)律呢?這節(jié)課,我們就來研究正比例。(板書:正比例)
二、引導探索,學習新知
1、教學例1,學習正比例的意義。
(1)結(jié)合情境圖,觀察表中的數(shù)據(jù),認識兩種相關(guān)聯(lián)的量。師出示自學提示:表中有哪兩種量?總價是怎樣隨著數(shù)量的變化而變化的?學生自學并在組內(nèi)交流。全班交流。
(2)認識相關(guān)聯(lián)的量。明確:像這樣,一種量變化,另一種量也隨著變化,這兩種量叫做相關(guān)聯(lián)的量。
2、計算表中的數(shù)據(jù),理解正比例的意義。
(1)計算相應的總價與數(shù)量的比值,看看有什么規(guī)律。學生計算后匯報:===…=3、5,每一組數(shù)據(jù)的比值一定。
(2)說一說,每一組數(shù)據(jù)的比值表示什么?(彩帶的單價,也就是彩帶的單價是一個固定的數(shù))
(3)請學生用公式把彩帶的總價、數(shù)量、單價之間的關(guān)系表示出來。
(4)明確成正比例的量及正比例關(guān)系的意義。兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。如果用字母y和x表示兩種相關(guān)聯(lián)的量,用字母k表示它們的比值(一定),正比例關(guān)系可以用下面的式子表示:
3、列舉并討論成正比例的量。
(1)生活中還有哪些成正比例的量?預設(shè):速度一定,路程與時間成正比例;長方形的寬一定,面積和長成正比例。
(2)小結(jié):成正比例的量必須具備哪些條件?哪個條件是關(guān)鍵?
兩種量中相對應的兩個數(shù)的比值一定,這是關(guān)鍵。
4、認識正比例圖象。(課件出示例1的表格及正比例圖象)
(1)觀察表格和圖象,你發(fā)現(xiàn)了什么?
(2)把數(shù)對(10,35)和(12,42)所在的`點描出來,再和上面的圖象連起來并延長,你還能發(fā)現(xiàn)什么?
無論怎樣延長,得到的都是直線。
(3)從正比例圖象中,你知道了什么?
生1:可以由一個量的值直接找到對應的另一個量的值。
生2:可以直觀地看到成正比例的量的變化情況。
(4)利用正比例圖象解決問題。
不計算,根據(jù)圖象判斷,如果買9m彩帶,總價是多少?49元能買多少米彩帶?
小明買的彩帶的米數(shù)是小麗的2倍,他花的錢是小麗的幾倍?預設(shè)生:因為在單價一定的情況下,數(shù)量與總價成正比例關(guān)系,小明買的彩帶的米數(shù)是小麗的2倍,他花的錢也應是小麗的2倍。設(shè)計意圖:先從觀察圖象入手,引導學生直觀認識相關(guān)聯(lián)的量,再結(jié)合表中的數(shù)據(jù),引導學生發(fā)現(xiàn)總價與數(shù)量的比值一定,使學生理解正比例的意義,最后結(jié)合正比例圖象,把數(shù)據(jù)與點聯(lián)系起來,根據(jù)圖象,不用計算就能找到一個量的值所對應的另一個量的值,使學生在解決問題的同時,感受數(shù)形結(jié)合思想。
三、課堂練習:
1、P46“做一做”
2、練習九第1、3~7題
六年級《正比例》的教學設(shè)計 2
【教學內(nèi)容】
正比例
【教學目標】
使學生理解正比例的意義,會正確判斷成正比例的量。
【重點難點】
重點:理解正比例的意義。
難點:正確判斷兩個量是否成正比例的關(guān)系。
【教學準備】
投影儀。
【復習導入】
1、復習引入。
用投影儀逐一出示下面的題目,讓學生回答。
①已知路程和時間,怎樣求速度?
板書: =速度。
②已知總價和數(shù)量,怎樣求單價?
板書: =單價。
③已知工作總量和工作時間,怎樣求工作效率?
板書: =工作效率。
2、引入課題:這是我們過去學過的一些常見的數(shù)量關(guān)系。這節(jié)課我們進一步來研究這些數(shù)量關(guān)系的一些特征,首先來研究這些數(shù)量之間的正比例關(guān)系。板書課題:成正比例的量。
【新課講授】
1、教學例1。
教師用投影儀出示例1的圖和表格。
學生觀察上表并討論問題。
(1)鉛筆的總價和數(shù)量有關(guān)系嗎?
(2)鉛筆的總價是怎樣隨著數(shù)量的變化而變化的?
(3)鉛筆的總價和數(shù)量的變化有什么規(guī)律?組織學生在小組中討論,然后交流說一說。
根據(jù)觀察,學生可能會說出:
①鉛筆的總價隨著數(shù)量變化,它們是兩種相關(guān)聯(lián)的量。
②數(shù)量增加,總價也增加;數(shù)量降低,總價也減少。
③鉛筆的總價和數(shù)量的比值總是一定的,即單價一定。
教師指出:總價和數(shù)量有這樣的變化關(guān)系,我們就說總價和數(shù)量成正比例關(guān)系,總價和數(shù)量叫做成正比例的量。
2、教師出示:一列火車行駛的時間和路程如下表。
引導學生觀察、思考:路程和時間有關(guān)系嗎?路程怎樣隨著時間的變化而變化?路程和時間的變化有什么規(guī)律?
組織學生分析、討論、匯報:路程和時間是兩種相關(guān)聯(lián)的量,路程擴大,時間也跟著擴大;路程縮小,時間也跟著縮小;但是路程和時間的比值一定,寫成關(guān)系式是 =速度(一定)。
教師小結(jié):所以說路程和時間成正比例關(guān)系,路程和時間叫做成正比例的量。
3、歸納概括正比例關(guān)系。
①組織學生分小組討論,上面兩個例子有什么共同規(guī)律?
②教師引導學生歸納總結(jié):都是兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化;如果這兩種量中相對應的兩個數(shù)的比值也就是商一定,這兩種量就叫做成正比例的量,它們的關(guān)系就叫做成正比例關(guān)系。
學生說一說是怎么理解正比例關(guān)系的。
要求學生把握三個要素:
第一:兩種相關(guān)聯(lián)的量。
第二:其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。
第三:兩個量的比值一定。
4、用字母表示正比例的關(guān)系。
教師:如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),比例關(guān)系可以用這樣的式子表示: (一定)
5、教師:想一想,生活中還有哪些成正比例的'量?
學生舉例說明并說出理由如:長方形的寬一定,面積和長成正比例;每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例;衣服的單價一定,購買衣服的數(shù)量和應付錢數(shù)成正比例。地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例;
【課堂作業(yè)】
完成教材第46頁的“做一做”(1)~(3)。
答案:
(1)
(2)比值表示每小時行駛多少km。
(3)成正比例。理由:路程隨著時間的變化而變化。
①時間增加,路程也增加,時間減少,路程也隨著減少;
②路程和時間的比值(速度)一定。
【課堂小結(jié)】
通過這節(jié)課的學習,你有什么收獲?
【課后作業(yè)】
完成練習冊中本課時的練習。
六年級《正比例》的教學設(shè)計 3
教學內(nèi)容:
教科書第62—63頁的例1、“試一試”和“練一練”,第66頁練習十三的第1—3題。
教學目標:
1、使學生經(jīng)歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。
2、使學生在認識成正比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學模型,進一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。
3、使學生進一步體會數(shù)學與日常生活的密切聯(lián)系,增強從生活現(xiàn)象中探索數(shù)學知識和規(guī)律的意識。
教學重難點:
理解相關(guān)聯(lián)的兩個量及正比例的意義,并能正確判斷兩種量是否成正比例
學情分析
1、學生在學習本單元之前已經(jīng)學習了比和比例的有關(guān)知識,會解決按比例分配的簡單數(shù)學問題。
2、有一些樸素的正、反比例概念。學生在中已經(jīng)積累了一些這方面的經(jīng)驗,比如坐車時間越長,行走的距離就越遠等。
多媒體運用:ppt課件
教學過程:
一、教學例1
1、談話引出例1的表格,讓學生說一說表中列出了哪兩種量。
2、引導學生觀察表中的數(shù)據(jù),說一說這兩種量的數(shù)值分別是怎樣變化的。
可先讓同桌相互說一說,再組織全班交流。通過交流,使學生初步感知兩種量的變化情況:行駛的時間擴大,路程也隨著擴大;行駛的時間縮小,路程也隨著縮小。
小結(jié):路程和時間是兩種相關(guān)聯(lián)的量,時間變化,路程也隨著變化。
3、引導學生進一步觀察表中的數(shù)據(jù),找一找這兩種量的變化的規(guī)律,啟發(fā)學生從“變化”中去尋找“不變”。
學生可能會從不同的'角度去尋找規(guī)律。
教師可根據(jù)交流的實際情況,及時引導學生通過計算確認這一規(guī)律,并有意識地從后一種角度突出這一規(guī)律。
如果學生發(fā)現(xiàn)不了上述規(guī)律,可引導學生寫出幾組相對應的路程與時間的比,并求出比值。
4、根據(jù)上面發(fā)現(xiàn)的規(guī)律,進一步啟發(fā)學生思考:這個比值表示什么?上面的規(guī)律能不能用一個式子來表示?
根據(jù)學生的回答,教師板書關(guān)系式:路程時間=速度(一定)
5、教師對兩種量之間的關(guān)系作具體說明:路程和時間是兩種相關(guān)聯(lián)的量,時間變化,路程也隨著變化。當路程和對應時間的比的比值總是一定,也就是速度一定時,行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。
(板書:路程和時間成正比例)
二、教學“試一試”
1、要求學生根據(jù)表中的已知條件先把表格填寫完整。
2、根據(jù)表中的數(shù)據(jù),依次討論表格下面的四個問題,并仿照例1作適當?shù)陌鍟?/p>
3、讓學生根據(jù)板書完整地說一說鉛筆的總價和數(shù)量成什么關(guān)系。
三、抽象表達正比例的意義
1、引導學生觀察上面的兩個例子,說說它們有什么共同點。
2、啟發(fā)學生思考:如果用字母x和y分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,正比例關(guān)系可以用怎樣的式子來表示?
根據(jù)學生的回答,板書關(guān)系式。
四、鞏固練習
1、完成第63頁的“練一練”。
先讓學生獨立思考并作出判斷,再要求說明判斷理由。
2、做練習十三第1~3題。
第1題讓學生按題目要求先各自算一算、想一想,再組織討論和交流。
第2題先讓學生獨立進行判斷,再指名說判斷的理由。
第3題要先讓學生說說題目要求我們把已知的正方形按怎樣的比放大,放大后正方形的邊長各是幾厘米,再讓學生在圖上畫一畫。
填好表格后,組織學生討論,明確:只有當兩種相關(guān)聯(lián)的量的比值一定時,它們才能成正比例。
五、全課小結(jié)
這節(jié)課你學會了什么?通過這節(jié)課的學習,你還有哪些收獲?
六年級《正比例》的教學設(shè)計 4
教學內(nèi)容
教科書第54頁例3,練習十二5,6,7題。
教學目標
1、進一步理解正比例的意義,會運用正比例知識解決簡單的實際問題。
2、通過運用正比例解決實際問題的活動,讓學生體驗數(shù)學的應用價值,培養(yǎng)學生解決問題的能力。
3、滲透函數(shù)思想,使學生受到辯證唯物主義觀念的啟蒙教育。
教學重、難點
運用正比例知識解決簡單的實際問題。
教學準備
教具:多媒體課件。
學具:作業(yè)本,數(shù)學書。
教學過程
一、復習引入
1、判斷下面各題中的兩種量是不是成正比例?為什么?
(1)飛機飛行的速度一定,飛行的時間和航程。
(2)梯形的上底和下底不變,梯形的面積和高。
(3)一個加數(shù)一定,和與另一個加數(shù)。
(4)如果y=3x,y和x。
2、揭示課題
教師:我們已經(jīng)學過正比例的一些知識,應用這些知識可以解決生活中的實際問題。這節(jié)課,我們就來學習"正比例的應用"。
二、合作交流,探索新知
1、用課件出示例3
教師:這幅圖告訴我們一個什么事情?需要解決什么問題?
教師:先獨立思考,再小組合作交流,看能想出哪些方法解決這個問題。
2、全班交流解答方法
指導學生思考出:
(1)195÷5×8=312(元),先求每份報紙的單價,再求8份報紙的總價,就是李老師應付給郵局的'錢。
(2)195÷(5÷8)=312(元),先求5份報紙是8份報紙的幾分之幾,即195元占李老師所付錢的幾分之幾,最后求出李老師所付的錢。
(3)195×(8÷5)=312(元),先求出8份報紙是5份報紙的幾倍,再把195元擴大相同的倍數(shù)后,結(jié)果就是李老師所付的錢。
3、嘗試用正比例知識解答
如果有學生想出用正比例方法解答,教師可以直接問:"你為什么要這樣解?"讓學生說出解題理由后再歸納其方法;如果學生沒想到用正比例知識解答,教師可作如下引導。
教師:除了這些解題方法外,我們還會用正比例方法解答嗎?請同學們用學過的有關(guān)正比例的知識思考:
(1)題中有哪兩種相關(guān)聯(lián)的量?
(2)題中什么量是不變的?一定的?
(3)題中這兩種相關(guān)聯(lián)的量是什么關(guān)系?
引導學生分析出:題中有所訂報紙份數(shù)和所付總錢數(shù)這兩個相關(guān)聯(lián)的量,它們的關(guān)系是所付總錢數(shù)÷所訂報紙份數(shù)=每份報紙單價,而題中的每份報紙單價一定,因此所付總錢數(shù)和所訂報紙份數(shù)成正比例關(guān)系。
隨學生的回答,教師可同步板書:
教師:運用我們前面所學的正比例知識,同學們會解答嗎?準備怎樣列比例式?
引導學生討論后回答,先要把李老師應付的錢數(shù)設(shè)為x元,再根據(jù)所付總錢數(shù)所訂份數(shù)=每份報紙單價的關(guān)系式,列式為1955=x8。
教師:同學們會計算嗎?把這個比例式計算出來。
學生解答。
教師:解答得對不對呢?你準備怎樣驗算?
學生討論驗算方法,教師引導:把求出的312元代入等式,左式=1955=39,右式=3128=39,左式=右式,也就是它們的比值相等,與題意相符,所以所求的解是正確的。
三、課堂活動
1、出示教科書第49頁的例1圖和補充條件
竹竿長(m)26…
影子長(m)39…
教師:在這個表中有哪兩種量?它們相關(guān)聯(lián)嗎?它們成什么關(guān)系?你是根據(jù)什么判斷的?
教師出示問題:小明和小剛測量出旗桿影子長21m,請問旗桿有多高呢?根據(jù)剛才我們判斷的比例關(guān)系,你能列出等式嗎?
學生獨立思考解答,討論交流。
2、小結(jié)方法
教師:你覺得我們在用正比例知識解決上面兩個問題的時候,步驟是怎樣的?(初步歸納,不求學生強記,只求理解。)
(1)設(shè)所求問題為x。
(2)判斷題中的兩個相關(guān)聯(lián)的量是否成正比例關(guān)系。
(3)列出比例式。
(4)解比例,驗算,寫答語。
四、練習應用
完成練習十二的5,6,7題。
五、課堂小結(jié)
這節(jié)課我們學習了什么知識?你有什么收獲?
六年級《正比例》的教學設(shè)計 5
教學目標:
1、初步理解正比例的意義,會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。
2、使學生在認識正比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學模式,進一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。
教學重點:
會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。
教學難點:
會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。
預習指導:
一、自學教材。
閱讀教材第62~63頁。
二、檢查學習。
1、怎樣兩個量成正比例?
2、完成"試一試"。
教學準備:
課件和口算題。
教學過程:
一、導入
談話:通過將近六年的學習,我們已經(jīng)了解了一些數(shù)量之間的關(guān)系,例如行程問題中的速度、時間、路程之間的關(guān)系,你知道這三個量之間的關(guān)系嗎?再如購物問題中單價、數(shù)量、總價之間的關(guān)系,你知道這三個量之間的關(guān)系嗎?這個單元我們要用一種新的觀點為,更深入地研究數(shù)量之間的關(guān)系。什么觀點呢?事物變化的觀點,讓一些量變起來,從變化中發(fā)現(xiàn)規(guī)律。
二、教學例1
1、課件出示例1的表
⑴看一看,表中有哪兩種量?這兩種量的數(shù)值是怎樣變化的?
⑵表中有路程和時間這兩種量,通過觀察數(shù)據(jù)我們可以發(fā)現(xiàn)這兩種量是有關(guān)聯(lián)的,時間變化,路程也隨著變化。
2、那么這兩種量的變化有沒有什么規(guī)律呢?下面我們來作進一步的研究。建議大家可以寫出幾組相對應的路程和時間的比,看一看你有什么發(fā)現(xiàn)。
3、我們可以寫出這么幾組路程和對應時間的比。
⑴發(fā)現(xiàn)了它們的比值都是80,大家想一想,這個比值80表示什么呢?這個規(guī)律能不能用一個式子來表示?
⑵這個比值80就表示汽車行駛的速度,從上面可以看出這個速度是相同的,一定的,因此可以用這樣一個式子來表示這個規(guī)律
⑶同學們,在這個題目中,路程和時間是兩種相關(guān)聯(lián)的量,時間變化,路程也隨著變化,當路程和對應時間的比的比值總是一定(也就是速度一定)時,我們就說行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。
課件出示:路程和時間成正比例。
⑷現(xiàn)在你能完整地說一說表中路程和時間成什么關(guān)系嗎?
4、剛才我們初步認識了正比例的關(guān)系,接著我們繼續(xù)來看下面這個題目。
⑴課件出示"試一試"
⑵請大家先根據(jù)題目里的`信息把表中的數(shù)據(jù)填完整,然后說一說總價是隨著哪個量的變化而變化的?
課件出示表中的數(shù)據(jù)。
⑶從表中我們可以看出鉛筆的總價是隨著購買數(shù)量的變化而變化的。
集體交流:
⑷我們先來看第2個問題,可以寫出這么幾組對應的總價和數(shù)量的比=0.3、=0.3…它們的比值相等,你寫對了嗎?
⑸再看第3個問題,這個比值表示的是鉛筆的單價,我們可以用總價:數(shù)量=單價(一定)這個式子來表示三者之間的關(guān)系。
小結(jié):鉛筆的總價和數(shù)量成正比例,因為總價和數(shù)量是兩種相關(guān)聯(lián)的量,數(shù)量變化,總價也隨著變化,當總價和是對應數(shù)量的比的比值總是一定(也就是單價一定)時,我們就說鉛筆的總價和購買的數(shù)量成正比例,鉛筆的總價和購買的數(shù)量是成正比例的量。
⑹你能完整地這樣說給你的同桌聽一聽嗎?
⑺同學們,我們通過以上的兩個例子認識了正比例的關(guān)系,想一想,如果用字母x和y分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么正比例的關(guān)系可以用怎樣的式子表示?
課件出示課題。
⑻回顧一下,我們是根據(jù)什么來判斷兩種數(shù)量能成正比例的?
指出:我們可以根據(jù)兩種相關(guān)聯(lián)的量的比值是不是一定來判斷兩種數(shù)量能不能成正比例。
5、完成"練一練"
⑴請大家根據(jù)表中的數(shù)據(jù)判斷生產(chǎn)零件的數(shù)量和時間成什么比例?并說說為什么?
⑵生產(chǎn)零件的數(shù)量和時間成正比例,因為生產(chǎn)零件的數(shù)量和時間是兩種相關(guān)聯(lián)的量,時間變化,零件的數(shù)量也隨著變化,當生產(chǎn)零件的數(shù)量和對應時間的比的比值總是一定(也就是每小時生產(chǎn)零件的個數(shù)一定)時,我們就說生產(chǎn)零件的數(shù)量和時間成正比例,生產(chǎn)零件的數(shù)量和時間是成正比例的量。
小結(jié):教師:同學們,今天我們學習了正比例的意義,你知道判斷兩種相關(guān)聯(lián)的量是否成正比例的方法了嗎?
三、練習
1、完成練習十三第1題。
請大家繼續(xù)看課本66頁第1題
2、完成練習十三第2題
⑴繼續(xù)看第2題,請你判斷,同一時間,物體的高度和影長成正比例嗎?為什么?
⑵同一時間,物體的高度和影長成正比例,因為每次物體的高度和它對應的影長的比值都是三分之五,是一定的。
3、完成練習十三第3題(課件出示題目)
⑴課件出示放大后的三個正方形
⑵大家看一看,你是這樣畫的嗎?
⑶接著請同學們對照表格計算出放大后每個正方形的周長和面積。
校對學生做的情況。
⑷請大家根據(jù)表中的數(shù)據(jù)討論下面兩個問題。
①正方形的周長與邊長成正比例嗎?為什么?
②正方形的面積與邊長成正比例嗎?為什么?
四、總結(jié)。
通過計算正方形周長與邊長的比值,我們可以判斷正方形的周長與邊長成正比例,因為它們的每組比值都相等,都是4;同樣通過計算正方形面積與邊長的比值,我們可以判斷它們不成正比例,因為它們每組的比值是不相同的,也就是說是不一定的。
板書設(shè)計:
正比例的意義
路程和時間是兩種相關(guān)聯(lián)的量,時間變化,路程也隨著變化,當路程和對應時間的比的比值總是一定(也就是速度一定)時,我們說行駛的路程和時間成正比例,行駛的路程和時間是成正比例的量。
六年級《正比例》的教學設(shè)計 6
教學目的:
1、使學生透過具體問題認識成正比例的量,理解正比例的好處,能決定兩種量是否成正比例關(guān)系,能找出生活中成正比例量的實例,并進行交流。
2、引導學生透過觀察、交流、歸納、推斷等數(shù)學活動,感受數(shù)學思維過程的合理性,培養(yǎng)學生的觀察潛力、推理潛力、歸納潛力和靈活運用知識的潛力。
教具、學具準備:
教師準備視頻展示臺,多媒體課件;學生在布店里自己選取一種布,調(diào)查買1米布要多少錢,買2米布要多少錢…,將調(diào)查結(jié)果記錄好。
教學過程:
一、復習準備
1、什么是比例?
2、下面是一列火車行駛的時間和所行的路程,用這個表中的數(shù)能寫成多少個有好處的比?哪些比能組成比例?把能組成的比例都寫出來。
時間(時)27
路程(千米)180630
二、導入新課
教師:在上面的表中,有哪兩種數(shù)量?(時間和路程)我們還要遇到許多數(shù)量,如單價等。
三、進行新課
用多媒體課件在剛才準備題的表格中增加列和數(shù)據(jù),變成例1。
時間(時)
路程(千米)
教師:先獨立思考后再討論、交流、回答以下問題
(1)表中有哪兩種量?
(2)這兩種量是怎樣變化的?
(3)還能夠從表中發(fā)現(xiàn)哪些規(guī)律?
教師:同學們發(fā)現(xiàn)表中有時間和路程這兩種量,并且時間在擴大,路程也在擴大,路程總是隨著時間的變化而變化,我們就說時間和路程這兩種量是相關(guān)聯(lián)的。
板書:相關(guān)聯(lián)。
教師:你們還發(fā)現(xiàn)哪些規(guī)律呢?
引導學生歸納出:
(1)時間和路程是相關(guān)聯(lián)的兩種量,路程隨著時間的變化而變化;
(2)時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小;
(3)路程和時間的比值都是90;時間和路程的比值都是1/90。
路程和時間的`比值是什么?(速度)
在這個表里,作為比值的速度即每小時所走的路程都是一個固定的數(shù),我們就說比值必須。也就是:(板書)路程/時間=速度(必須)
數(shù)量(米)1234567…
總價(元)8.216.424.632.841.049.257.4…
先觀察表中有哪兩種量?這兩種量是怎樣變化的?再觀察這兩種量中相對應的兩個數(shù)的比值是否必須。
學生分析后引導學生歸納:
(1)表中買布的數(shù)量和買布的總價是相關(guān)聯(lián)的兩種量,總價隨著數(shù)量的變化而變化;
(2)數(shù)量擴大,總價隨著擴大;數(shù)量縮小,總價也隨著縮小;
(3)總價和數(shù)量的比值是必須的,每米布的單價都是8.2元,它們之間的關(guān)系能夠?qū)懗煽們r/數(shù)量=單價(必須)。
教師:引導學生歸納出這兩個問題中都有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數(shù)的比值必須。凡是貼合以上規(guī)律的兩種量,我們就把它叫做正比例的量,它們之間的關(guān)系就是正比例關(guān)系,如果用字母X和Y表示兩種相關(guān)聯(lián)的量,用K表示它們的比值,正比例關(guān)系能夠用式子表示為X/Y=K(必須)。
教師:請同學們相互說一說生活中還有哪些是成正比例的量?
指導學生完成第56頁“做一做”。
四、鞏固練習
指導學生完成練習十六第1~3題。
五、課堂小結(jié)
教師:這節(jié)課你們學到了哪些知識?用了哪些學習方法?還有哪些不懂的問題?
學生小結(jié)后教師對全課所學的知識進行歸納。
創(chuàng)意作業(yè)
小組四人分別出題,正比例的例子,一人回答,3人決定對錯不會的可請教老師。
六年級《正比例》的教學設(shè)計 7
一、教學目標
(1)知識目標:能根據(jù)正比例函數(shù)的圖像,觀察歸納出函數(shù)的性質(zhì);并會簡單應用。
(2)能力目標:逐步培養(yǎng)學生的觀察能力,概括的能力,通過教師指導發(fā)現(xiàn)知識,初步培養(yǎng)學生數(shù)形結(jié)合的思想以及由一般到特殊的數(shù)學思想;
(3)情感目標:激發(fā)學生學習數(shù)學的興趣和積極性,逐步培養(yǎng)學生實事求是的科學態(tài)度。
二、教學的重點和難點
教學重點:正比例函數(shù)的性質(zhì)及其應用。
教學難點:發(fā)現(xiàn)正比例函數(shù)的性質(zhì)
三、教學方法與學法指導教學方法:
引導發(fā)現(xiàn)法和直觀演示法,本節(jié)課的難點是發(fā)現(xiàn)正比例函數(shù)的性質(zhì),通過教師的引導,啟發(fā)調(diào)動學生的積極性,讓學生在課堂上多活動(畫圖)、多觀察(圖象),主動參與到整個教學活動中來,最后發(fā)現(xiàn)其性質(zhì)。
學法指導:引導學生學會觀察、歸納的學習方法。
四、教具準備
電腦PPT,洋蔥學院電腦版
五、教學過程:
(一)溫故知新,引入課題
溫故:正比例函數(shù)的圖像是什么?
答:正比例函數(shù)圖像是經(jīng)過原點(0,0)和點(1,k)的一條直線
(二):知新:
在兩個直角坐標系內(nèi),分別畫出下列每組函數(shù)的圖象像:y=xy=3xy=4xy=y=x②y=-xy=-3xy=-4xy=-y=-x
引導學生觀察圖像,看看每組直線分布的特征先讓學生在坐標紙上畫出上述函數(shù)的圖象,之后利用洋蔥學院播放《正比例函數(shù)的性質(zhì)》,以動態(tài)的演示畫出函數(shù)圖象,吸引學生的學習興趣,讓他們能查漏補缺,找出自己所畫的圖象與視頻中的圖象有什么不同?
觀察圖像,思考問題:
1.圖像經(jīng)過的象限與k的取值有何聯(lián)系?不夠明確。圖像經(jīng)過的象限與k的取值(特別是符號)有何聯(lián)系?
2.對其中的某一個正比例函數(shù)圖像(例如y=3x),當x增大時,函數(shù)值y怎樣變化?x減小呢?是不是要提出減小?請斟酌。
3.你從中得出什么規(guī)律?
第一個問題:圖像經(jīng)過的象限與k的取值有何聯(lián)系?
估計生:發(fā)現(xiàn)第一組的五條直線都經(jīng)過第一象限和第三象限;而第二組的五條直線都經(jīng)過第二和第四象限。
師:從比例系數(shù)來看呢,函數(shù)的比例系數(shù)和他們的圖像分布有什么聯(lián)系?用詞前后宜一致
估計生:第一組k>0,而第二組k<0。
師:很好,誰能把他們聯(lián)系一下?
估計生:當k>0時,函數(shù)圖像經(jīng)過第一、三象限;當k<0時,函數(shù)圖像經(jīng)過第二、四象限。
師:那么是不是對于所有的正比例函數(shù)的圖像都有:當k>0時,函數(shù)圖像經(jīng)過第一、三象限;當k<0時,函數(shù)圖像經(jīng)過第二、四象限呢?【電腦演示:任意正比例函數(shù)的圖像,當在一、三象限運動時,它的解析式中的.k的值無論怎樣變化都是大于零的,反之,圖像在二、四象限運動時,k的值都小于零的。】(這個演示過程可以登錄xx這個網(wǎng)址,進行演示,讓學生更加直觀的觀察到k的正負對函數(shù)圖象的影響)
下面由老師來證明這個性質(zhì):(由觀察猜想到邏輯證明)
板書:當k>0時,函數(shù)圖像經(jīng)過第一、三象限;當k<0時,函數(shù)圖像經(jīng)過第二、四象限。
證明:當k>0時,若x>0,則kx>0,即y>0∴點(x,y)在第一象限
若x<0,則kx<0,即y<0∴點(x,y)在第三象限
當x=0時,則kx=0,即y=0∴點(x,y)即原點。
即函數(shù)圖像上所有的點(原點除外)都在一、三象限內(nèi),所以圖像經(jīng)過一、三象限。同理,當k<0時,亦可證明函數(shù)圖像經(jīng)過二、四象限。
我們看到:當k>0時,函數(shù)圖像的走向很像漢字筆畫里的“提”,當k<0時,走向是“捺”。這樣更形象,容易記憶。
PPT展示正比例函數(shù)的性質(zhì):當k>0時,函數(shù)圖像經(jīng)過第一、三象限;當k<0時,函數(shù)圖像經(jīng)過第二、四象限。
師:現(xiàn)在我們做個小練習,由正比例函數(shù)解析式(根據(jù)k的正負),來判斷其函數(shù)圖像的走向。
y=-xy=xy=xy=-xy=(a2+1)x(其中a是常數(shù))y=(-a2-1)x(其中a是常數(shù))
鼓勵學生踴躍搶答。
反過來,由函數(shù)圖象所在的象限,請你說出一個滿足條件的正比例函數(shù)解析式。好,我們來看下一個問題,(電腦重現(xiàn)第二問題:2、對其中的某一個正比例函數(shù)圖像,當x增大時,函數(shù)值y怎樣變化?x減小呢?)播放洋蔥視頻。
板書:當k>0時,自變量x逐漸增大時,函數(shù)值y也在逐漸增大;(即“提”的走向)當k<0時,自變量x逐漸增大時,函數(shù)值y反而減小。(即“捺”的走向)
師:小練習:由函數(shù)解析式,請你說出它的變化情況:y=3xy=-xy=xy=-y=(a2+1)x(其中a是常數(shù))y=(-a2-1)x(其中a是常數(shù))
鼓勵學生踴躍搶答。
第三個問題:你從中得出什么規(guī)律?
歸納總結(jié)(由學生回答)正比例函數(shù)y=kx(k≠0)的性質(zhì):
當k>0時,函數(shù)圖像經(jīng)過第一、三象限;自變量x逐漸增大時,函數(shù)值y也在逐漸增大;(也就是“提”的走向)
當k<0時,函數(shù)圖像經(jīng)過第二、四象限;自變量x逐漸增大時,函數(shù)值y反而減小。(也就是“捺”的走向)
歸納為一句話,正比例函數(shù)圖象的性質(zhì)歸根結(jié)底看k的符號。
即:k>0提(一、三,增大);
k<0捺(二、四,減小)
(三)應用
1、正比例函數(shù)的解析式是___________,它的圖像一定經(jīng)過___________。
2、y=-的圖像經(jīng)過第___________象限。
3、已知ab<0,則函數(shù)y=x的圖象經(jīng)過___________象限。
4、已知正比例函數(shù)y=(2a+1)x,若y的值隨x的增大而減小,求a的取值范圍。
5、當m為何值時,y=mxm2-3是正比例函數(shù),且y隨x的增大而增大。
思考題:
①已知正比例函數(shù)y=(m+1)xm2+1,那么它的圖象經(jīng)過哪些象限。
②分別說明下列各正比例函數(shù),當m為何值時,y隨x的增大而增大,或y隨x的增大而減小?
a、y=(m2+1)x
b、y=m2x
c、y=(m+1)x
(四)小結(jié)這節(jié)課讓我們知道了……
以表格形式小結(jié),可以整理知識點,形成網(wǎng)絡(luò).有利于學生的記憶和內(nèi)化,讓學生理清知識脈絡(luò)(先播放視頻,之后PPT總結(jié)本節(jié)課的重點)。
(五)作業(yè)89頁練習題
(六)課后反思
1.成功之處:本節(jié)課的重點是正比例函數(shù)的性質(zhì)及其應用。難點是發(fā)現(xiàn)正比例函數(shù)的性質(zhì),通過教師的引導,洋蔥視頻的引導,啟發(fā)調(diào)動學生的積極性,讓學生自主的去分析發(fā)現(xiàn)函數(shù)的性質(zhì)。教師的主導作用與學生主體地位達到了統(tǒng)一。使本節(jié)課的重點得到了突出,難點得到了突破;對學生學習中的情況進行了指導,作出了反饋;培養(yǎng)了學生利用數(shù)形結(jié)合的思想方法解決問題的能力;本節(jié)課的教學注重由傳授單一的知識技能,轉(zhuǎn)向為學生“自主探索發(fā)現(xiàn)總結(jié)規(guī)律”,使學生對新的知識與數(shù)學思想方法更容易理解和掌握。
2.不足之處:
(1)在探索正比例函數(shù)性質(zhì)時,沒有預估到學生畫函數(shù)圖象費時太長,導致后面的教學過程比較緊張。
(2)在應用新知這一環(huán)節(jié)中對學生習題的反饋情況了解的不夠全面。
(3)為激發(fā)學生自主學習的興趣,教師的課堂語言應精煉。
3、改進措施:
(1)要充分的相信學生總結(jié)規(guī)律的能力。在學生總結(jié)規(guī)律過后給予肯定,不必加以過多的語言進行重復,給學生足夠的空間思考回答問題。
(2)在學生明確正比例函數(shù)的性質(zhì)后,應用新知反饋練習時,可以采取課堂小測驗等方法進行,這樣教師可以更準確的掌握學生對新知識的掌握情況。
(3)在性質(zhì)的發(fā)現(xiàn)總結(jié)過程中,應讓學生自己獨立完成,教師不必著急幫助總結(jié),這樣可以更加集中學生的注意力,激發(fā)學習興趣。
在實際教學中為了體現(xiàn)學生學習的主體性,和教師教學的主導性,我花費了很多時間在學生的動手操作、小組討論上,但如何能更好的處理好學生探索過程中的引導和講解,還需要在實際教學中不斷地反思才能不斷地進步。
六年級《正比例》的教學設(shè)計 8
教學要求:
1、使學生認識正比例關(guān)系的意義,理解,掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義間斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。
2、進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學生判斷、推理的能力。
教學過程:
一、復習鋪墊
1、說出下列每組數(shù)量之間的關(guān)系。
(1)速度時間路程
(2)單價數(shù)量總價
(3)工作效率工作時間工作總量
2、引入新課
我們已經(jīng)學過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系,這節(jié)課開始,我們就來研究和認識這種變化規(guī)律。今天,我們先認識正比例關(guān)系的意義。
二、教學新課
1、教學例1。
出示例1。讓學生計算,在課本上填表。
讓學生觀察表里兩種量變化的數(shù)據(jù),思考。
(1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化的?
(2)路程和時間相對應數(shù)值的比的比值各是多少?這兩種量變化有什么規(guī)律?
引導學生進行討論。
提問:這里比值50是什么數(shù)量?(誰能說出它的數(shù)量關(guān)系式?)
想一想,這個式子表示的是什么意思?
2、教學例2
出示例2和想一想
要求學生按剛才學習例1的方法學習例2,然后把你學習中的發(fā)現(xiàn)綜合起來告訴大家。
學生觀察思考后,指名回答。然后再提問,這兩種數(shù)量的.變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?
比值1.6是什么數(shù)量,你能用數(shù)量關(guān)系式表示出來嗎?
誰來說說這個式子表示的意思?
3、概括正比例的意義。
像例1、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢?請同學樣看課本第40頁最后一節(jié)。
4、具體認識
(1)提問:例1里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎?為什么?
例2里的兩種量是不是成正比例的量?為什么?
(2)做練習八第1題。
5、教學例3
出示例3,讓學生思考/
提問:怎樣判斷是不是成正比例?
請同學們看一看例3,書上怎樣判斷的,我們說得對不對。
強調(diào):關(guān)鍵是列出關(guān)系式,看是不是比值一定。
三、鞏固練習
1、做練一練第1題。
指名學生口答,說明理由。
2、做練一練第2題。
指名口答,并要求說明理由。
3、做練習八第2題(小黑板)
讓學生把成正比例關(guān)系的先勾出來。
指名口答,選擇幾題讓學生說一說怎樣想的?
四、課堂小結(jié)
這節(jié)課學習了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示Y和X這兩種相關(guān)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?
五、家庭作業(yè)。
六年級《正比例》的教學設(shè)計 9
教學目標:
1、知識與技能
經(jīng)歷正比例意義的建構(gòu)過程,通過具體問題認識成正比例的量,初步感受生活中存在很多成正比例的量,并能正確判斷成正比例的量。
2、過程與方法
通過觀察、比較、分析、歸納等數(shù)學活動,發(fā)現(xiàn)正比例量的特征,并嘗試抽象概括正比例的意義。提高分析比較、歸納概括、判斷推理能力,同時滲透初步的函數(shù)思想。
3、情感態(tài)度與價值觀
在主動參與數(shù)學活動的過程中,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,并樂于與人交流。
教學重點:
正確理解正比例的意義。
教學難點:
能準確判斷成正比例的量。
教學準備:
多媒體課件,學生練習紙
教學過程:
一、在學生熟悉的兒歌中引入正比例的量: 你聽過《數(shù)青蛙》這一首兒歌嗎?(課件)
師:你會往下唱嗎?三只青蛙,四只青蛙,n只青蛙呢?
師:你在唱得時候有什么規(guī)律嗎?
生:嘴巴數(shù)和青蛙只數(shù)一樣,眼睛數(shù)總是青蛙只數(shù)的2倍,腿數(shù)總是青蛙只數(shù)的4倍。
師:你真聰明,會橫著觀察觀察表格。
生:青蛙每增加一只,嘴巴數(shù)增加1張,眼睛增加2只,腿數(shù)增加4條。
師:很好,你是豎著觀察表格的。
師:我已經(jīng)學過比,所以還可以說,眼睛數(shù)/青蛙只數(shù)=2;腿數(shù)/青蛙只數(shù)=4;嘴巴數(shù)/青蛙只數(shù)=1。
看來,嘴巴數(shù)、眼睛數(shù)、腿數(shù)都隨著青蛙只數(shù)的變化而變化,像這樣有一定關(guān)系的量,在數(shù)學上,稱為相關(guān)聯(lián)的量。
(學生的自主學習需要教師的引導,此處教師看似無意的評價,實際是對學生學習方法的指導,直接影響學生后續(xù)的自主學習活動,有了此處的指導,學生接下來就能順利地自主觀察表格發(fā)現(xiàn)規(guī)律了。)
二、自主建構(gòu)正比例的量
(一)初步感受成正比例量的變化規(guī)律
看來,像這樣相關(guān)聯(lián)的量在變化的時候有一定的規(guī)律,有興趣繼續(xù)研究嗎?在我們的生活中,像這樣相關(guān)聯(lián)的量還有許多,老師為同學們的研究找了幾組材料:(課件)
1、學生獨立填表。
2、選擇其中的一張表格,通過觀察說說你發(fā)現(xiàn)了什么規(guī)律? 你可以模仿前面找規(guī)律的方法。
3、反饋交流
4、小結(jié):這兩張表格的變化情況有什么相同點? 一種量增加或(減少),另一種量也相應增加或(減少),它們相對應的兩個數(shù)的比值一定
(二)在比較中繼續(xù)感受成正比例量的變化規(guī)律
看到同學們學得那么認真,數(shù)學老爺爺也要來考考我們,想挑戰(zhàn)嗎?他給我們帶來下面兩組信息,并告訴我們只有一張表格的變化情況和前面的變化規(guī)律一樣,但不知是哪一張,你能找出是哪一張嗎?我們先把表格填寫完整。
1、出示材料:
下面是邊長與周長,邊長與面積的變化情況,把表填寫完整。
2、四人小組活動:
思考:哪一張表格的變化情況和前面的變化規(guī)律一樣? 3、比較圖像,再次感受正比例
除了用表格的形式表示它們的變化情況,我們還可以用圖來表示它們的變化情況,你想看嗎? 指導看圖,說說你發(fā)現(xiàn)了什么?
師:另外兩張表格的變化情況我們也畫成了圖,你想看嗎? 思考:這四張圖如果讓你分類,你會怎么分?為什么這樣分? 其中三張圖為什么都呈直線狀態(tài),朝一個方向生長?(比值一定)其中一張圖為什么呈曲線?(比值不一定)
揭題:像這樣的兩個相關(guān)聯(lián)的量,我們在數(shù)學上就說它們成正比例,具體可以這樣描述:
(三)嘗試歸納正比例的意義
1、出示:
像這樣時間增加(或減少),所走的路程也相應增加(或減少),而且相應的路程與時間的比值(也就是速度)相同,那么,我們就說路程和時間成正比例。
2、你覺得這里哪幾個詞比較重要?
3、你能照這樣說說另外幾組成正比例的量嗎? 不成正比例的用雖然但是來說
三、運用提高
1、小明和爸爸的年齡變化情況如下,把表填寫完整。父子的年齡成正比例嗎?你怎么想的?
2、在《數(shù)青蛙》兒歌中找找成正比例的量。
四、小結(jié)提升:
通過今天這節(jié)課的學習,你有什么收獲?成正比例的量有什么重要特征?
剛才同學們在一首《數(shù)青蛙》的兒歌中就找到了這么多的成正比例的量,可以想象在我們的生活中一定存在著更多的成正比例的量,希望同學們在課后能以數(shù)學的眼光去觀察,發(fā)現(xiàn)生活中成正比例的量,下一節(jié)課我們一起交流
板書設(shè)計:
正比例的意義
①兩種相關(guān)聯(lián)的量
②一種量擴大(或縮小)另一種量也擴大(或縮小)
③兩種量中相對應的兩個量的比的比值(商)是一定的 路程/時間=速度(一定)總價/數(shù)量=單價(一定)
《正比例》教學反思
對比過北師大和人教版兩個版本的教材,人教版的教材中介紹了“兩個相關(guān)聯(lián)的量”,而北師大版中沒有,在最初的教學設(shè)計中本沒有設(shè)計介紹“相關(guān)聯(lián)的量”這一環(huán)節(jié),但課前準備中我也為是否設(shè)計這一環(huán)節(jié)而矛盾,但最后還是在我的課堂中呈現(xiàn)了這一概念,課后自己不禁反思,“正比例的意義”本來就是一抽象的概念,我還在課堂上有加入“相關(guān)聯(lián)的量”這一概念,無疑是增加了學生理解的難度。另在設(shè)計教案之初,本以為本班學生整體情況較好,在處理“正比例的意義”中的“比值一定”時,只注重了口頭上的`描述而忽略了讓學生動手去算算比值。課后看見學生的作業(yè),自己不盡感嘆“失策”,對于抽象的概念一定要讓學生通過實際的生活經(jīng)驗或者是通過自己的實際操作去理解。
還有本節(jié)課還有一個最大的問題,就是沒有及時抓住學生精彩的生成。也許我們每一位老師都有過這樣的經(jīng)歷:我們精心設(shè)計的一節(jié)課,原想著會很順利地在課堂教學中予以實施,但事實卻并不是這樣,往往會因為學生的一些出乎意料的想法或問題,而使我們的教學偏離了預設(shè)的軌道,課上得并不那么順利。比如,象正方形的周長、面積與其邊長,原的周長與半徑這些特例是否成正比例,我覺得這實際上就是教師如何有效處理動態(tài)生成的問題。
教學不應只是平實地傳遞和接受知識的過程,更多的是師生雙方在課堂上互動對話、實踐創(chuàng)造,隨機生成與資源開發(fā)的過程。它是教師及時捕捉課堂上無法預見的教學因素,利用課堂上隨機生成的資源展開再教學的過程。就正如趙老師前面提到的“課中也要備課”,動態(tài)生成才能真正體現(xiàn)學生的主體性和課堂的真實性,它追求課堂的真實、自然、和諧,再現(xiàn)師生“原汁原味”的教學生態(tài)情境,從而達到師生共識、共享、共進的教學高境界,實現(xiàn)師生生命價值的不斷超越。
那么,怎樣才能做到課堂上的精彩生成呢?從生成的內(nèi)容看,有顯性的知識、技能生成和隱性的情感、態(tài)度生成。因此,我認為:促進課堂生成的關(guān)鍵是教師課前的預設(shè)、教學的機智和學生的心理環(huán)境。要達到課堂有精彩的生成且能很好的抓住并能利用生成這點還需要我的不斷努力。
六年級《正比例》的教學設(shè)計 10
教學內(nèi)容:
九年義務(wù)教育六年制小學數(shù)學第十二冊P63——64
教學目標:
1、能用“描點法”畫出表示正比例關(guān)系的圖像,幫助學生初步認識正比例的圖像,進一步認識成正比例的量的變化規(guī)律。
2、使學生能根據(jù)具有正比例關(guān)系的一個量的數(shù)值看圖估計另一個量的數(shù)值。初步體會正比例圖像的實際應用,進一步培養(yǎng)觀察能力和估計能力。
3、使學生進一步體會數(shù)學與日常生活的密切聯(lián)系,養(yǎng)成積極主動地參與學習活動的習慣。
教學重點:
能認識正比例關(guān)系的圖像。
教學難點:
利用正比例關(guān)系的圖像解決實際問題。
設(shè)計理念:
數(shù)學課堂教學中要讓學生親身經(jīng)歷知識形成的全過程。課堂中向?qū)W生動態(tài)地展示正比例圖像的繪制過程,引導學生能用“描點法”畫出表示正比例關(guān)系的圖像,通過觀察幫助學生體會成正比例的量的變化規(guī)律,進而掌握利用圖像由一個量的數(shù)值估計另一個量的數(shù)值的方法,使學生能逐步利用正比例關(guān)系的圖像解決實際問題
教學步驟教師活動學生活動
一、復習激趣1、判斷下面兩種量能否成正比例,并說明理由。
◎數(shù)量一定,總價和單價
◎和一定,一個加數(shù)和另一個加數(shù)
◎比值一定,比的前項和后項
2、折線統(tǒng)計圖具有什么特點?能否把成正比例的兩種量之間的關(guān)系在折線統(tǒng)計圖里表示出來呢?如果能,那又會是什么樣子的呢?
學生口答
想象猜測
二、探究新知1、出示例1的表格(略)
根據(jù)表中列出的`兩種量,在黑板上分別畫出橫軸和縱軸。
你能根據(jù)表中的每組數(shù)據(jù),在方格圖中找一找相應的點,并依次描出這些點嗎?
2、學生嘗試畫出正比例的圖像
3、展示、糾錯
每個點都應該表示路程和時間的一組對應數(shù)值。
4、回答例2圖像下面的問題,重點弄清:
(1)說出每個點表示的含義。
(2)為什么所描的點在一條直線上?
(3)你能根據(jù)時間(路程)估計所對應的路程(時間)嗎?你是怎么看的?
借助直觀的圖像理解兩種量同時擴大或縮小的變化規(guī)律。
學生到黑板上示范
互相評價糾錯
學生討論
說說是怎樣想的
三、鞏固延伸
1、完成練一練
小玲打字的個數(shù)和所用的時間成正比例嗎?為什么?
根據(jù)表中的數(shù)據(jù),描出打字數(shù)量和時間所對應的點,再把它們按順序連起來。
估計小玲5分鐘打了多少個字?打750個字要多少分鐘?
2、練習十三第4題
先看一看、想一想,再組織討論和交流。
要求學生說出估計的思考過程。
3、練習十三第5題
先獨立填表,再根據(jù)表中的數(shù)據(jù)描出長度和總價所對應的點,把它們按順序連起來。
組織討論和交流
4、你能根據(jù)生活實際,設(shè)計出兩種成正比例量關(guān)系的一組數(shù)據(jù)嗎?
根據(jù)表中的數(shù)據(jù),描出所對應的點,再把它們按順序連起來。
同桌之間相互提出問題并解答。
獨立完成,集體評講
想一想,說一說
畫一畫,議一議
學生設(shè)計,交換檢查并相互評價
四、評價反思
這節(jié)課你學會了什么?你有哪些收獲?還有哪些疑問?
【六年級《正比例》的教學設(shè)計】相關(guān)文章:
正比例教學設(shè)計05-19
《正比例》教學設(shè)計07-15
正比例教學設(shè)計05-11
《正比例的意義》教學設(shè)計05-10
正比例函數(shù)教學設(shè)計02-13
正比例函數(shù)教學設(shè)計03-29
正比例教學設(shè)計范文03-08
《正比例的意義》教學設(shè)計05-16
正比例函數(shù)教學設(shè)計04-17
正比例教學設(shè)計(15篇)01-06