等差數(shù)列教學(xué)設(shè)計
作為一位無私奉獻的人民教師,常常要根據(jù)教學(xué)需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計是實現(xiàn)教學(xué)目標(biāo)的計劃性和決策性活動。教學(xué)設(shè)計應(yīng)該怎么寫呢?下面是小編幫大家整理的等差數(shù)列教學(xué)設(shè)計,歡迎大家分享。
等差數(shù)列教學(xué)設(shè)計1
一、教材分析。
1、教學(xué)目標(biāo):
(1)理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;
(2)培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
(3)通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。
2、教學(xué)重點和難點:
(1)等差數(shù)列的概念。
(2)等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項公式。
二、教法分析。
采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、教學(xué)程序。
本節(jié)課的教學(xué)過程由:(一)復(fù)習(xí)引入;(二)新課探究;(三)應(yīng)用例解;(四)反饋練習(xí);(五)歸納小結(jié);(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1、全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是cm)分別是21,22,23,24,25。
2、某劇場前10排的座位數(shù)分別是:38,40,42,44,46,48,50,52,54,56。
3、某長跑運動員7天里每天的訓(xùn)練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。
共同特點:從第2項起,每一項與前一項的差都等于同一個常數(shù)。
(二) 新課探究。
1、給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
(1)“從第二項起”滿足條件;
(2)公差d一定是由后項減前項所得;
(3)公差可以是正數(shù)、負數(shù),也可以是0。
2、推導(dǎo)等差數(shù)列的通項公式:若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進而歸納出等差數(shù)列的通項公式:= +(n—1)d
此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學(xué)生嚴謹?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:– =d;– =d;– =d……– =d。
將這(n—1)個等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d
當(dāng)n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當(dāng)n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。
接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n—1)×2 , 即 =2n—1 以此來鞏固等差數(shù)列通項公式運用
(三)應(yīng)用舉例。
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1 :
(1)求等差數(shù)列8,5,2,…的第20項;
(2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?
第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式。
例2:
在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。
在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固。
例3:
梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
(四)反饋練習(xí)。
1、小節(jié)后的練習(xí)中的`第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。
2、若數(shù)列{ } 是等差數(shù)列,若 = k ,(k為常數(shù))試證明:數(shù)列{ }是等差數(shù)列。
此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
(五)歸納小結(jié) 。(由學(xué)生總結(jié)這節(jié)課的收獲)
1、等差數(shù)列的概念及數(shù)學(xué)表達式。
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2、等差數(shù)列的通項公式 = +(n—1) d會知三求一
(六) 布置作業(yè)。
1、必做題:課本P114 習(xí)題3。2第2,6 題。
2、選做題:已知等差數(shù)列{ }的首項 = —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
四、板書設(shè)計。
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。
等差數(shù)列教學(xué)設(shè)計2
一、教學(xué)目標(biāo):
1、知識與技能
(1)初步掌握一些特殊數(shù)列求其前n項和的常用方法.
(2)通過把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和問題,培養(yǎng)學(xué)生觀察、分析問題的能力,轉(zhuǎn)化的數(shù)學(xué)思想以及數(shù)學(xué)運算能力。
2、 過程與方法
培養(yǎng)學(xué)生分析解決問題的能力,歸納總結(jié)能力,以及數(shù)學(xué)運算的能力。
3、 情感,態(tài)度,價值觀
通過教學(xué),讓學(xué)生認識到事物是普遍聯(lián)系,發(fā)展變化的。
二、教學(xué)重點:
把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列或等比數(shù)列求和
三、教學(xué)難點:
尋找適當(dāng)?shù)淖儞Q方法,達到化歸的目的
四、教學(xué)過程設(shè)計
復(fù)習(xí)引入:
(1)1+2+3+……+100=
(2) 1+3+5+……+2n-1=
(3) 1+2+4+……+2《數(shù)列求和》教學(xué)設(shè)計及反思=
(4) 《數(shù)列求和》教學(xué)設(shè)計及反思=
設(shè)計意圖:
讓學(xué)生回顧舊知,由此導(dǎo)入新課。
[教師過渡]:今天我們學(xué)習(xí)《數(shù)列求和》第二課時,課標(biāo)要求和學(xué)習(xí)內(nèi)容如下:(多媒體課件展示)
導(dǎo)入新課:
[情境創(chuàng)設(shè)] (課件展示):
例1:求數(shù)列《數(shù)列求和》教學(xué)設(shè)計及反思,…的前《數(shù)列求和》教學(xué)設(shè)計及反思項和
分析:將各項分母通分,顯然是行不通的,啟發(fā)學(xué)生能否通過通項的特點,將每一項拆成兩項的差,使它們之間能互相抵消很多項。
[問題生成]:請同學(xué)們觀察否是等差數(shù)列或等比數(shù)列?
設(shè)問:既然不是等差數(shù)列,也不是等比數(shù)列,那么就不能直接用等差,等比數(shù)列的求和公式,請同學(xué)們仔細觀察一下此數(shù)列有何特征
[教師過渡]:對于通項形如《數(shù)列求和》教學(xué)設(shè)計及反思(其中數(shù)列《數(shù)列求和》教學(xué)設(shè)計及反思為等差數(shù)列)求和時,我們采取裂項相消求和方法
[特別警示] 利用裂項相消求和方法時,抵消后并不一定只剩下第一項和最后一項,也有可能前面剩兩項,后面也剩兩項,再就是將通項公式裂項后,有時候需要調(diào)整前面的系數(shù),才能使裂開的兩項差與原通項公式相等.
變式訓(xùn)練:
1、已知數(shù)列{ 《數(shù)列求和》教學(xué)設(shè)計及反思 }的前n項和為《數(shù)列求和》教學(xué)設(shè)計及反思,若《數(shù)列求和》教學(xué)設(shè)計及反思,設(shè)《數(shù)列求和》教學(xué)設(shè)計及反思,求數(shù)列{ 《數(shù)列求和》教學(xué)設(shè)計及反思 }前10和《數(shù)列求和》教學(xué)設(shè)計及反思
說明:例題引伸是教學(xué)中常做的一件事,它可以使學(xué)生的認識得到“升華”,
發(fā)展學(xué)生的思維,并起到觸類旁通,舉一反三的效果
【小結(jié)】裂項的目的是為使部分項相互抵消.大多數(shù)裂項相消的通項均可表示為bn=《數(shù)列求和》教學(xué)設(shè)計及反思,其中{《數(shù)列求和》教學(xué)設(shè)計及反思 }是公差d不為0的等差數(shù)列,則《數(shù)列求和》教學(xué)設(shè)計及反思《數(shù)列求和》教學(xué)設(shè)計及反思)
例2:求和:《數(shù)列求和》教學(xué)設(shè)計及反思
分析:直接算肯定不可行,啟發(fā)學(xué)生能否通過通項的特點進行求解。
[問題生成]:
根據(jù)以上例題,觀察該例題通項公式的特點。
[教師過渡]:如果{《數(shù)列求和》教學(xué)設(shè)計及反思}是等差數(shù)列,《數(shù)列求和》教學(xué)設(shè)計及反思是等比數(shù)列,那么求數(shù)列《數(shù)列求和》教學(xué)設(shè)計及反思 的前n項和,可用錯位相減法.
《數(shù)列求和》教學(xué)設(shè)計及反思
變式訓(xùn)練2、
拓展練習(xí):1、已知函數(shù)y=3x2-2x,數(shù)列{《數(shù)列求和》教學(xué)設(shè)計及反思 }的前n項和 為sn ,點(n, sn)均在函數(shù)y=f(x)的圖象上。
(1)、求數(shù)列{an}的通項公式;
(2)、設(shè)是數(shù)列{bn=《數(shù)列求和》教學(xué)設(shè)計及反思 }的前n和《數(shù)列求和》教學(xué)設(shè)計及反思,求使得Tn〈《數(shù)列求和》教學(xué)設(shè)計及反思對所有都成立的最小正整數(shù)m。
五、方法總結(jié):
公式求和:對于等差數(shù)列和等比數(shù)列的前n項和可直接用求和公式.
拆項重組:利用轉(zhuǎn)化的思想,將數(shù)列拆分、重組轉(zhuǎn)化為等差或等比數(shù)列求和.
裂項相消:對于通項型如《數(shù)列求和》教學(xué)設(shè)計及反思(其中數(shù)列《數(shù)列求和》教學(xué)設(shè)計及反思為等差數(shù)列) 的數(shù)列,在求和時將每項分裂成兩項之差的形式,一般除首末兩項或附近幾項外,其余各項先后抵消,可較易求出前n項和。
錯位相減:若一個數(shù)列具備有如下特征:它的各項恰好是由某個等差數(shù)列與某個等比數(shù)列之對應(yīng)項相乘所構(gòu)成的,其求和則用錯位相減法 (此法即為等比數(shù)列求和公式的推導(dǎo)方法)。
六、作業(yè)布置:
課本P49:第8題
七、教學(xué)反思
1.我從兩個方面設(shè)計變式題。其一,橫向變化,其二是縱向變化。橫向變化是:從公式→例題各個側(cè)面來看求和,讓學(xué)生開拓了視野,展開豐富的聯(lián)想:分組求和可分兩組,是否還有分三組來解的題?裂項相消法求和有分母裂項求和,是否還有分母有理化進行求和等。縱向變化:條件削弱,問題復(fù)雜,難度提升。從具體到抽象,從特殊到一般螺旋式的上升。橫向變化,可看出思維變異的多樣性。這種思維變異的多樣性在今后的學(xué)習(xí)過程中將要面臨的。如何理解這種數(shù)學(xué)的合理性呢?學(xué)生的學(xué)習(xí)的本質(zhì)是繼承、借鑒、發(fā)展、創(chuàng)新,而問題變式教學(xué)恰是在有實例的支持下,繼承了思維變異的常用技巧,借鑒此技巧、尋求更多的.變異,如分組成三個或更多個的式子求和,使學(xué)的思維得到充分的發(fā)展,從而取得創(chuàng)新的目的,這就是教學(xué)中所要取得的效果。從縱向變化,可看出思維變異的深入性。問題的層層深入,使問題的一般規(guī)律掀起蓋頭,讓學(xué)生體驗了思維向縱深發(fā)展的規(guī)律。
2.反思求和公式方法的總結(jié),我也發(fā)現(xiàn)了種種遺憾.如學(xué)生的解法均缺乏根據(jù),但教師贊賞學(xué)生這種善于通過類比聯(lián)想而發(fā)現(xiàn)的創(chuàng)造性解法,為了保護學(xué)生的積極性和創(chuàng)造性,沒有進行否定,而是讓學(xué)生課下思考,是否妥當(dāng)?需要研究.又如裂項相消法等,都是由教師提出來的,若是能由學(xué)生主動提出就更好了.為此急需加強對學(xué)生提出問題的能力的訓(xùn)練和培養(yǎng),
3.利用課堂教學(xué)的機會,有意識地將數(shù)學(xué)研究的某些思想方法滲透到教學(xué)過程中,課堂教學(xué)不能單純傳授知識,應(yīng)在傳授知識的同時注重能力的培養(yǎng)、在上述思想的指導(dǎo)下,這堂課的教學(xué)過程中,每個例題都讓學(xué)生體會到通項化歸的思想方法。
4.提高課堂教學(xué)的實效,加快學(xué)生的思維節(jié)秦,不拖泥帶水,該說的話,要說到點上,要說透,能少說的,就決不多說,盡量擠出時間讓學(xué)生多練。在例題講解中,以學(xué)生為主,先由學(xué)生自行解題,展開討論及合作學(xué)習(xí),充分調(diào)動了學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,提高創(chuàng)新思維的能力。
等差數(shù)列教學(xué)設(shè)計3
本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實驗教科書·數(shù)學(xué)5》(北師大版)第一章數(shù)列第二節(jié)等差數(shù)列第一課時.?dāng)?shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用.等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣.同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法.
【教學(xué)目標(biāo)】
1. 知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
①等差數(shù)列的概念;②等差數(shù)列的通項公式
【教學(xué)難點】
①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.
【設(shè)計思路】
1.教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.
③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.
2.學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一:創(chuàng)設(shè)情境,引入新課
1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18,自然放水每天水位降低2.5,最低降至5.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:)組成一個什么數(shù)列?
3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的'本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊涵著三列數(shù).
學(xué)生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二:觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達.)
三:舉一反三,鞏固定義
1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0 .
(設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計意圖:強化等差數(shù)列的證明定義法)
四:利用定義,導(dǎo)出通項
1.已知等差數(shù)列:8,5,2,…,求第200項?
2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)
五:應(yīng)用通項,解決問題
1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?
2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差數(shù)列 3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)
六:反饋練習(xí):教材13頁練習(xí)1
七:歸納總結(jié):
1.一個定義:
等差數(shù)列的定義及定義表達式
2.一個公式:
等差數(shù)列的通項公式
3.二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充
(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.
等差數(shù)列教學(xué)設(shè)計4
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
2、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)
a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入數(shù)學(xué)建模的思想方法并能運用。
b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點和難點
根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:
①等差數(shù)列的概念。
②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對數(shù)學(xué)建模的思想方法較為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。
二、學(xué)情分析
對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
二、教法分析
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、學(xué)法指導(dǎo)在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的`問題弄清。
四、教學(xué)程序
本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______ 。(N﹡;解析式)
通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。
2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②
通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認知能力。
(二) 新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
① 從第二項起滿足條件;
②公差d一定是由后項減前項所得;
③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)同一個常數(shù)
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:
an+1-an=d (n1)
同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1. 9 ,8,7,6,5,4, d=-1
2. 0.70,0.71,0.72,0.73,0.74 d=0.01
3. 0,0,0,0,0,0, d=0
4. 1,2,3,2,3,4,
5. 1,0,1,0,1,
其中第一個數(shù)列公差0, 第二個數(shù)列公差0,第三個數(shù)列公差=0
由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0
2、第二個重點部分為等差數(shù)列的通項公式
在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項 ,公差d,由學(xué)生研究分組討論a4 的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。
若一等差數(shù)列{an }的首項是a1,公差是d,
則據(jù)其定義可得:
a2 - a1 =d 即: a2 =a1 +d
a3 a2 =d 即: a3 =a2 +d = a1 +2d
a4 a3 =d 即: a4 =a3 +d = a1 +3d
等差數(shù)列教學(xué)設(shè)計5
一、教材分析
1、教材的地位和作用:
《等差數(shù)列》是人教版新課標(biāo)教材《數(shù)學(xué)》必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
2、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)
a知識與技能:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運用。培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
b.過程與方法:在教學(xué)過程中我采用討論式、啟發(fā)式的方法使學(xué)生深刻的理解不完全歸納法。
c.情感態(tài)度與價值觀:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點和難點
重點:
①等差數(shù)列的`概念。
②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
難點:
①等差數(shù)列的通項公式的推導(dǎo)
②用數(shù)學(xué)思想解決實際問題
二、學(xué)情教法分析:
對于高一學(xué)生,知識經(jīng)驗已較為豐富,具備了一定的抽象思維能力和演繹推理能力,所以我本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。學(xué)生在初中時只是簡單的接觸過等差數(shù)列,具體的公式還不會用,因些在公式應(yīng)用上加強學(xué)生的理解
三、學(xué)法分析:
在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)過程
1.創(chuàng)設(shè)情景 提出問題
首先要學(xué)生回憶數(shù)列的有關(guān)概念,數(shù)列的兩種方法——通項公式和遞推公式
【等差數(shù)列教學(xué)設(shè)計】相關(guān)文章:
等差數(shù)列求和教學(xué)設(shè)計03-09
等差數(shù)列求和教學(xué)設(shè)計范文04-16
等差數(shù)列通項公示教學(xué)設(shè)計(精選7篇)05-19
高一數(shù)學(xué)等差數(shù)列的教學(xué)設(shè)計方案06-14
等差數(shù)列的教學(xué)反思06-13
等差數(shù)列教學(xué)反思04-09