www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)

    時(shí)間:2023-10-14 07:03:18 教學(xué)設(shè)計(jì) 我要投稿

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)

      作為一名無私奉獻(xiàn)的老師,就難以避免地要準(zhǔn)備教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以讓教學(xué)工作更加有效地進(jìn)行。教學(xué)設(shè)計(jì)應(yīng)該怎么寫呢?下面是小編為大家收集的高一數(shù)學(xué)教學(xué)設(shè)計(jì),歡迎大家分享。

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)1

      (一)教學(xué)目標(biāo)

      1.知識(shí)與技能

      (1)理解兩個(gè)集合的并集與交集的含義,會(huì)求兩個(gè)簡(jiǎn)單集合的并集和交集.

      (2)能使用Venn圖表示集合的并集和交集運(yùn)算結(jié)果,體會(huì)直觀圖對(duì)理解抽象概念的作用。

      (3)掌握的關(guān)的術(shù)語(yǔ)和符號(hào),并會(huì)用它們正確進(jìn)行集合的并集與交集運(yùn)算。

      2.過程與方法

      通過對(duì)實(shí)例的分析、思考,獲得并集與交集運(yùn)算的法則,感知并集和交集運(yùn)算的實(shí)質(zhì)與內(nèi)涵,增強(qiáng)學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識(shí)和能力.

      3.情感、態(tài)度與價(jià)值觀

      通過集合的并集與交集運(yùn)算法則的發(fā)現(xiàn)、完善,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識(shí)和數(shù)學(xué)思想認(rèn)識(shí)客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

      (二)教學(xué)重點(diǎn)與難點(diǎn)

      重點(diǎn):交集、并集運(yùn)算的含義,識(shí)記與運(yùn)用.

      難點(diǎn):弄清交集、并集的含義,認(rèn)識(shí)符號(hào)之間的區(qū)別與聯(lián)系

      (三)教學(xué)方法

      在思考中感知知識(shí),在合作交流中形成知識(shí),在獨(dú)立鉆研和探究中提升思維能力,嘗試實(shí)踐與交流相結(jié)合.

      (四)教學(xué)過程

      教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動(dòng) 設(shè)計(jì)意圖

      提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實(shí)數(shù)加法運(yùn)算,探究集合能否進(jìn)行類似“加法”運(yùn)算.

      (1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}

      (2)A = {x | x是有理數(shù)},

      B = {x | x是無理數(shù)},

      C = {x | x是實(shí)數(shù)}.

      師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實(shí)數(shù)能進(jìn)行加減運(yùn)算,探究集合是否有相應(yīng)運(yùn)算.

      生:集合A與B的元素合并構(gòu)成C.

      師:由集合A、B元素組合為C,這種形式的組合就是為集合的并集運(yùn)算. 生疑析疑,

      導(dǎo)入新知

      形成

      概念

      思考:并集運(yùn)算.

      集合C是由所有屬于集合A或?qū)儆诩螧的元素組成的,稱C為A和B的并集.

      定義:由所有屬于集合A或集合B的元素組成的集合. 稱為集合A與B的并集;記作:A∪B;讀作A并B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:

      師:請(qǐng)同學(xué)們將上述兩組實(shí)例的共同規(guī)律用數(shù)學(xué)語(yǔ)言表達(dá)出來.

      學(xué)生合作交流:歸納→回答→補(bǔ)充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.

      應(yīng)用舉例 例1 設(shè)A = {4,5,6,8},B = {3,5,7,8},求A∪B.

      例2 設(shè)集合A = {x | –1

      例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.

      例2解:A∪B = {x |–1

      師:求并集時(shí),兩集合的相同元素如何在并集中表示.

      生:遵循集合元素的互異性.

      師:涉及不等式型集合問題.

      注意利用數(shù)軸,運(yùn)用數(shù)形結(jié)合思想求解.

      生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時(shí)注意集合元素的互異性. 學(xué)生嘗試求解,老師適時(shí)適當(dāng)指導(dǎo),評(píng)析.

      固化概念

      提升能力

      探究性質(zhì) ①A∪A = A, ②A∪ = A,

      ③A∪B = B∪A,

      ④ ∪B, ∪B.

      老師要求學(xué)生對(duì)性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.

      形成概念 自學(xué)提要:

      ①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會(huì)是兩集合的一種怎樣的運(yùn)算?

      ②交集運(yùn)算具有的`運(yùn)算性質(zhì)呢?

      交集的定義.

      由屬于集合A且屬于集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.

      即A∩B = {x | x∈A且x∈B}

      Venn圖表示

      老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識(shí),自我體會(huì)交集運(yùn)算的含義. 并總結(jié)交集的性質(zhì).

      生:①A∩A = A;

      ②A∩ = ;

      ③A∩B = B∩A;

      ④A∩ ,A∩ .

      師:適當(dāng)闡述上述性質(zhì).

      自學(xué)輔導(dǎo),合作交流,探究交集運(yùn)算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).

      應(yīng)用舉例 例1 (1)A = {2,4,6,8,10},

      B = {3,5,8,12},C = {8}.

      (2)新華中學(xué)開運(yùn)動(dòng)會(huì),設(shè)

      A = {x | x是新華中學(xué)高一年級(jí)參加百米賽跑的同學(xué)},

      B = {x | x是新華中學(xué)高一年級(jí)參加跳高比賽的同學(xué)},求A∩B.

      例2 設(shè)平面內(nèi)直線l1上點(diǎn)的集合為L(zhǎng)1,直線l2上點(diǎn)的集合為L(zhǎng)2,試用集合的運(yùn)算表示l1,l2的位置關(guān)系. 學(xué)生上臺(tái)板演,老師點(diǎn)評(píng)、總結(jié).

      例1 解:(1)∵A∩B = {8},

      ∴A∩B = C.

      (2)A∩B就是新華中學(xué)高一年級(jí)中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,A∩B = {x | x是新華中學(xué)高一年級(jí)既參加百米賽跑又參加跳高比賽的同學(xué)}.

      例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點(diǎn),平行或重合.

      (1)直線l1,l2相交于一點(diǎn)P可表示為 L1∩L2 = {點(diǎn)P};

      (2)直線l1,l2平行可表示為

      L1∩L2 = ;

      (3)直線l1,l2重合可表示為

      L1∩L2 = L1 = L2. 提升學(xué)生的動(dòng)手實(shí)踐能力.

      歸納總結(jié) 并集:A∪B = {x | x∈A或x∈B}

      交集:A∩B = {x | x∈A且x∈B}

      性質(zhì):①A∩A = A,A∪A = A,

      ②A∩ = ,A∪ = A,

      ③A∩B = B∩A,A∪B = B∪A. 學(xué)生合作交流:回顧→反思→總理→小結(jié)

      老師點(diǎn)評(píng)、闡述 歸納知識(shí)、構(gòu)建知識(shí)網(wǎng)絡(luò)

      課后作業(yè) 1.1第三課時(shí) 習(xí)案 學(xué)生獨(dú)立完成 鞏固知識(shí),提升能力,反思升華

      備選例題

      例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.

      【解析】法一:∵A∩B = {–2},∴–2∈B,

      ∴a – 1 = –2或a + 1 = –2,

      解得a = –1或a = –3,

      當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.

      當(dāng)a = –3時(shí),A = {–1,10,6},A不合要求,a = –3舍去

      ∴a = –1.

      法二:∵A∩B = {–2},∴–2∈A,

      又∵a2 + 1≥1,∴a2 – 3 = –2,

      解得a =±1,

      當(dāng)a = 1時(shí),A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.

      當(dāng)a = –1時(shí),A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.

      例2 集合A = {x | –1

      (1)若A∩B = ,求a的取值范圍;

      (2)若A∪B = {x | x<1},求a的取值范圍.

      【解析】(1)如下圖所示:A = {x | –1

      ∴數(shù)軸上點(diǎn)x = a在x = – 1左側(cè).

      ∴a≤–1.

      (2)如右圖所示:A = {x | –1

      ∴數(shù)軸上點(diǎn)x = a在x = –1和x = 1之間.

      ∴–1

      例3 已知集合A = {x | x2 – ax + a2 – 19 = 0},B = {x | x2 – 5x + 6 = 0},C = {x | x2 + 2x – 8 = 0},求a取何實(shí)數(shù)時(shí),A∩B 與A∩C = 同時(shí)成立?

      【解析】B = {x | x2 – 5x + 6 = 0} = {2,3},C = {x | x2 + 2x – 8 = 0} = {2,– 4}.

      由A∩B 和A∩C = 同時(shí)成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.

      當(dāng)a = 5時(shí),A = {x | x2 – 5x + 6 = 0} = {2,3},此時(shí)A∩C = {2},與題設(shè)A∩C = 相矛盾,故不適合.

      當(dāng)a = –2時(shí),A = {x | x2 + 2x – 15 = 0} = {3,5},此時(shí)A∩B 與A∩C = ,同時(shí)成立,∴滿足條件的實(shí)數(shù)a = –2.

      例4 設(shè)集合A = {x2,2x – 1,– 4},B = {x – 5,1 – x,9},若A∩B = {9},求A∪B.

      【解析】由9∈A,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.

      當(dāng)x = 3時(shí),A = {9,5,– 4},B = {–2,–2,9},B中元素違背了互異性,舍去.

      當(dāng)x = –3時(shí),A = {9,–7,– 4},B = {–8,4,9},A∩B = {9}滿足題意,故A∪B = {–7,– 4,–8,4,9}.

      當(dāng)x = 5時(shí),A = {25,9,– 4},B = {0,– 4,9},此時(shí)A∩B = {– 4,9}與A∩B = {9}矛盾,故舍去.

      綜上所述,x = –3且A∪B = {–8,– 4,4,–7,9}.

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)2

      本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)5》(北師大版)第一章數(shù)列第二節(jié)等差數(shù)列第一課時(shí).?dāng)?shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用.等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣.同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法.

      【教學(xué)目標(biāo)】

      1. 知識(shí)與技能

      (1)理解等差數(shù)列的定義,會(huì)應(yīng)用定義判斷一個(gè)數(shù)列是否是等差數(shù)列:

      (2)賬務(wù)等差數(shù)列的通項(xiàng)公式及其推導(dǎo)過程:

      (3)會(huì)應(yīng)用等差數(shù)列通項(xiàng)公式解決簡(jiǎn)單問題。

      2.過程與方法

      在定義的理解和通項(xiàng)公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗(yàn)從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

      3.情感、態(tài)度與價(jià)值觀

      通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動(dòng),培養(yǎng)學(xué)生主動(dòng)探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

      【教學(xué)重點(diǎn)】

      ①等差數(shù)列的概念;②等差數(shù)列的通項(xiàng)公式

      【教學(xué)難點(diǎn)】

      ①理解等差數(shù)列“等差”的特點(diǎn)及通項(xiàng)公式的含義;②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程.

      【學(xué)情分析】

      我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時(shí)注重從具體的生活實(shí)例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展.

      【設(shè)計(jì)思路】

      1.教法

      ①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對(duì)知識(shí)進(jìn)行主動(dòng)建構(gòu);有利于突出重點(diǎn),突破難點(diǎn);有利于調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,發(fā)揮其創(chuàng)造性.

      ②分組討論法:有利于學(xué)生進(jìn)行交流,及時(shí)發(fā)現(xiàn)問題,解決問題,調(diào)動(dòng)學(xué)生的積極性.

      ③講練結(jié)合法:可以及時(shí)鞏固所學(xué)內(nèi)容,抓住重點(diǎn),突破難點(diǎn).

      2.學(xué)法

      引導(dǎo)學(xué)生首先從三個(gè)現(xiàn)實(shí)問題(數(shù)數(shù)問題、水庫(kù)水位問題、儲(chǔ)蓄問題)概括出數(shù)組特點(diǎn)并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點(diǎn),推導(dǎo)出等差數(shù)列的通項(xiàng)公式;可以對(duì)各種能力的同學(xué)引導(dǎo)認(rèn)識(shí)多元的推導(dǎo)思維方法.

      【教學(xué)過程】

      一:創(chuàng)設(shè)情境,引入新課

      1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

      2.水庫(kù)管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫(kù)的辦法清理水庫(kù)中的雜魚.如果一個(gè)水庫(kù)的水位為18,自然放水每天水位降低2.5,最低降至5.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫(kù)每天的水位(單位:)組成一個(gè)什么數(shù)列?

      3.我國(guó)現(xiàn)行儲(chǔ)蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計(jì)算下一期的利息.按照單利計(jì)算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個(gè)什么數(shù)列?

      教師:以上三個(gè)問題中的數(shù)蘊(yùn)涵著三列數(shù).

      學(xué)生:

      1:0,5,10,15,20,25,….

      2:18,15.5,13,10.5,8,5.5.

      3:10072,10144,10216,10288,10360.

      (設(shè)置意圖:從實(shí)例引入,實(shí)質(zhì)是給出了等差數(shù)列的現(xiàn)實(shí)背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實(shí)生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識(shí)的自主性,培養(yǎng)學(xué)生的歸納能力.

      二:觀察歸納,形成定義

      ①0,5,10,15,20,25,….

      ②18,15.5,13,10.5,8,5.5.

      ③10072,10144,10216,10288,10360.

      思考1上述數(shù)列有什么共同特點(diǎn)?

      思考2根據(jù)上數(shù)列的共同特點(diǎn),你能給出等差數(shù)列的一般定義嗎?

      思考3你能將上述的文字語(yǔ)言轉(zhuǎn)換成數(shù)學(xué)符號(hào)語(yǔ)言嗎?

      教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

      學(xué)生:分組討論,可能會(huì)有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

      教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號(hào)角度理解等差數(shù)列的定義.

      (設(shè)計(jì)意圖:通過對(duì)一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會(huì)到等差數(shù)列的規(guī)律和共同特點(diǎn);一開始抓住:“從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差為同一常數(shù)”,落實(shí)對(duì)等差數(shù)列概念的準(zhǔn)確表達(dá).)

      三:舉一反三,鞏固定義

      1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

      (1)1,1,1,1,1;

      (2)1,0,1,0,1;

      (3)2,1,0,-1,-2;

      (4)4,7,10,13,16.

      教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.

      注意:公差d是每一項(xiàng)(第2項(xiàng)起)與它的前一項(xiàng)的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

      (設(shè)計(jì)意圖:強(qiáng)化學(xué)生對(duì)等差數(shù)列“等差”特征的理解和應(yīng)用).

      2思考4:設(shè)數(shù)列{an}的通項(xiàng)公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

      (設(shè)計(jì)意圖:強(qiáng)化等差數(shù)列的證明定義法)

      四:利用定義,導(dǎo)出通項(xiàng)

      1.已知等差數(shù)列:8,5,2,…,求第200項(xiàng)?

      2.已知一個(gè)等差數(shù)列{an}的首項(xiàng)是a1,公差是d,如何求出它的任意項(xiàng)an呢?

      教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評(píng)價(jià)、引導(dǎo),總結(jié)推導(dǎo)方法,體會(huì)歸納思想以及累加求通項(xiàng)的方法;讓學(xué)生初步嘗試處理數(shù)列問題的`常用方法.

      (設(shè)計(jì)意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會(huì)找到多種不同的解決辦法,教師要逐一點(diǎn)評(píng),并及時(shí)肯定、贊揚(yáng)學(xué)生善于動(dòng)腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識(shí).鼓勵(lì)學(xué)生自主解答,培養(yǎng)學(xué)生運(yùn)算能力)

      五:應(yīng)用通項(xiàng),解決問題

      1判斷100是不是等差數(shù)列2, 9,16,…的項(xiàng)?如果是,是第幾項(xiàng)?

      2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

      3求等差數(shù)列 3,7,11,…的第4項(xiàng)和第10項(xiàng)

      教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

      學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項(xiàng)和公差就可以求出其通項(xiàng)公式

      (設(shè)計(jì)意圖:主要是熟悉公式,使學(xué)生從中體會(huì)公式與方程之間的聯(lián)系.初步認(rèn)識(shí)“基本量法”求解等差數(shù)列問題.)

      六:反饋練習(xí):教材13頁(yè)練習(xí)1

      七:歸納總結(jié):

      1.一個(gè)定義:

      等差數(shù)列的定義及定義表達(dá)式

      2.一個(gè)公式:

      等差數(shù)列的通項(xiàng)公式

      3.二個(gè)應(yīng)用:

      定義和通項(xiàng)公式的應(yīng)用

      教師:讓學(xué)生思考整理,找?guī)讉(gè)代表發(fā)言,最后教師給出補(bǔ)充

      (設(shè)計(jì)意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個(gè)方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識(shí)和掌握基本概念,并靈活運(yùn)用基本概念.)

      【設(shè)計(jì)反思】

      本設(shè)計(jì)從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項(xiàng)公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識(shí)體系,形成師生之間的良性互動(dòng),提高課堂教學(xué)效率.

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)3

      教學(xué)目標(biāo)

      1.知識(shí)目標(biāo):正確理解現(xiàn)階段函數(shù)的概念,理解定義域的概念

      2.能力目標(biāo):使學(xué)生具有使用函數(shù)模型研究生活中簡(jiǎn)單的事物變化規(guī)律的能力。

      3.情感目標(biāo):滲透數(shù)學(xué)來源于生活,運(yùn)用于生活的思想。

      重點(diǎn)讓學(xué)生理解現(xiàn)階段函數(shù)的概念,定義域的概念。

      難點(diǎn)用函數(shù)模型去研究生活中簡(jiǎn)單的事物變化規(guī)律時(shí),如何確定定義域。

      學(xué)情

      分析授課班級(jí)為高一年級(jí)的學(xué)生,有朝氣,有活力,愛實(shí)踐,愛生活。本課之前,學(xué)生已經(jīng)學(xué)習(xí)了初中函數(shù)概念,為本課的學(xué)習(xí)打下基礎(chǔ)。

      教法與學(xué)法教法:微課視頻中包含情境教學(xué)法、多媒體輔助教學(xué)法的使用。

      信息化教學(xué)資源

      1.動(dòng)畫設(shè)計(jì)《世界在不斷的變化》

      2.專業(yè)錄頻軟件;

      3.視頻后期處理軟件;

      4.QQ;

      5.其它圖片、背景音樂。

      課前準(zhǔn)備

      復(fù)習(xí)初中數(shù)學(xué)函數(shù)概念

      教學(xué)過程

      環(huán)節(jié)設(shè)計(jì):教師活動(dòng)、學(xué)生活動(dòng)、設(shè)計(jì)意圖

      環(huán)節(jié)一創(chuàng)設(shè)情境

      興趣導(dǎo)入首先讓學(xué)生觀看視頻《世界在不斷的變化》

      老師解說:這個(gè)世界在不斷的變化,有一句很有哲理的話“這個(gè)世界唯一沒有變化的就是這個(gè)世界一直在改變”。聰明的人類為了在這個(gè)不斷變化的世界中生存,想出了很多記錄世界變化規(guī)律的辦法。今天我們就來學(xué)習(xí)一個(gè)好辦法,它就是數(shù)學(xué)函數(shù),函數(shù)是研究事物變化規(guī)律的數(shù)學(xué)模型之一。

      1看視頻。

      2聽老師解說,函數(shù)是研究世界變化規(guī)律的數(shù)學(xué)模型之一。

      3了解函數(shù)的作用,對(duì)函數(shù)產(chǎn)生興趣。

      通過讓學(xué)生觀看視頻,并對(duì)學(xué)生講解,讓學(xué)生了解函數(shù)是用來研究事物變化規(guī)律的數(shù)學(xué)模型之一,這樣學(xué)生能更深刻的理解函數(shù)的功能,即激發(fā)了學(xué)生學(xué)習(xí)熱情,又回顧初中學(xué)習(xí)的數(shù)學(xué)函數(shù)的定義。

      在某一個(gè)變化過程中有兩個(gè)變更x和y,在某一法則的作用下,如果對(duì)于x的`每一個(gè)值,y都有唯一的值與其相對(duì)應(yīng),就稱y是x的函數(shù),這時(shí)x是自變量,y是因變量.

      用一個(gè)生活實(shí)例加深對(duì)知識(shí)的理解。

      實(shí)例:到學(xué)校商店購(gòu)買某種果汁飲料,每瓶售價(jià)2.5元,那么購(gòu)買瓶數(shù)x,與應(yīng)付款y之間存在一種對(duì)應(yīng)關(guān)系y=2.5x.瓶數(shù)x在自然數(shù)集中每取定一個(gè)值,應(yīng)付款y就有唯一一個(gè)值與其對(duì)應(yīng),我們可以運(yùn)用對(duì)應(yīng)關(guān)系y=2.5x去進(jìn)行方便的運(yùn)算。

      在這個(gè)例子中,我們發(fā)現(xiàn)自變更x只有在自然數(shù)集中取值才有意義,其實(shí)如果我們細(xì)心研究所有已知函數(shù),就會(huì)發(fā)現(xiàn)確定自變量x的取值范圍,是使用函數(shù)模型描述世界變化規(guī)律的前提.

      所以我們重新定義函數(shù),將自變量x的取值范圍用集合D來表示.

      函數(shù)的定義:

      在某一個(gè)變化的過程中有兩個(gè)變量x和y,設(shè)變量x的取值范圍為數(shù)集D,如果對(duì)于D內(nèi)的每一個(gè)x值,按照某個(gè)對(duì)應(yīng)法則f,y都有唯一確定的值與它對(duì)應(yīng)環(huán)節(jié)三

      知識(shí)總結(jié)

      (1)函數(shù)的概念。

      (2)強(qiáng)調(diào)用函數(shù)來研究事物變化規(guī)律的前提是確定自變量x的取值范圍,即定義域。

      學(xué)生回顧本次微課所學(xué)習(xí)的知識(shí)。讓學(xué)生回顧本節(jié)課學(xué)習(xí)內(nèi)容,強(qiáng)化本節(jié)課重點(diǎn),為下節(jié)課打下基礎(chǔ)。

      環(huán)節(jié)四實(shí)例檢測(cè)

      實(shí)例:文具店出售某種鉛筆,每只售價(jià)0.12元,應(yīng)付款額是購(gòu)買鉛筆數(shù)的函數(shù),當(dāng)購(gòu)買6支以內(nèi)(含6支)的鉛筆時(shí),請(qǐng)用表達(dá)式來表示這個(gè)函數(shù).

      要求學(xué)生把做題結(jié)果拍成照片,發(fā)到郵箱,及時(shí)反饋.學(xué)生練習(xí),并把做題結(jié)果拍成照片,發(fā)到我的郵箱,并通過QQ與學(xué)生進(jìn)行交流實(shí)例鞏固今天學(xué)習(xí)的函數(shù)概念。

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)4

      一、本節(jié)內(nèi)容在教材中的地位與作用:

      《函數(shù)的單調(diào)性》系人教版高中數(shù)學(xué)必修一的內(nèi)容,該內(nèi)容包括函數(shù)的單調(diào)性的定義與判斷及其證明。在初中學(xué)習(xí)函數(shù)時(shí),借助圖像的直觀性研究了一些函數(shù)的增減性.這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高.這節(jié)通過對(duì)具體函數(shù)圖像的歸納和抽象,概括出函數(shù)在某個(gè)區(qū)間上是增函數(shù)或減函數(shù)的準(zhǔn)確含義,明確指出函數(shù)的增減性是相對(duì)于某個(gè)區(qū)間來說的.教材中判斷函數(shù)的增減性,既有從圖像上進(jìn)行觀察的直觀方法,又有根據(jù)其定義進(jìn)行邏輯推理的嚴(yán)格方法,最后將兩種方法統(tǒng)一起來,形成根據(jù)觀察圖像得出猜想結(jié)論,進(jìn)而用推理證明猜想的體系.函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識(shí)是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識(shí)的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡(jiǎn)單性質(zhì),是今后研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問題中均需用到函數(shù)的單調(diào)性;同時(shí)在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的數(shù)形結(jié)合思想將貫穿于我們整個(gè)高中數(shù)學(xué)教學(xué)。

      二、學(xué)情、教法分析:

      按現(xiàn)行新教材結(jié)構(gòu)體系,學(xué)生只學(xué)過一次函數(shù)、二次函數(shù)、反比例函數(shù),所以對(duì)函數(shù)的單調(diào)性研究也只能限于這幾種函數(shù)。依據(jù)現(xiàn)有認(rèn)知結(jié)構(gòu),學(xué)生只能根據(jù)函數(shù)的圖象觀察出“隨著自變量的增大,函數(shù)值增大”的變化趨勢(shì),而不能用符號(hào)語(yǔ)言進(jìn)行嚴(yán)密的代數(shù)證明,只能依據(jù)形的直觀性進(jìn)行感性判斷而不能進(jìn)行“思辯”的理性認(rèn)識(shí)。所以在教學(xué)中要找準(zhǔn)學(xué)生學(xué)習(xí)思維的“最近發(fā)展區(qū)”進(jìn)行有意義的建構(gòu)教學(xué)。在教學(xué)過程中,要注意學(xué)生第一次接觸代數(shù)形式的證明,為使學(xué)生能迅速掌握代數(shù)證明的格式,要注意讓學(xué)生在內(nèi)容上緊扣定義貫穿整個(gè)學(xué)習(xí)過程,在形式上要從有意識(shí)的模仿逐漸過渡到獨(dú)立的證明。

      三、教學(xué)目標(biāo)與教學(xué)重、難點(diǎn)的制定:

      依據(jù)課程標(biāo)準(zhǔn)的具體要求以及基于教材內(nèi)容的具體分析,制定本節(jié)課的'教學(xué)目標(biāo)為:

      1.通過函數(shù)單調(diào)性的學(xué)習(xí),讓學(xué)生通過自主探究活動(dòng),體會(huì)數(shù)學(xué)概念的形成過程的真諦,學(xué)會(huì)運(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。

      2.理解并掌握函數(shù)的單調(diào)性及其幾何意義,掌握用定義證明函數(shù)的單調(diào)性的步驟,會(huì)求函數(shù)的單調(diào)區(qū)間,提高應(yīng)用知識(shí)解決問題的能力。

      3.能夠用函數(shù)的性質(zhì)解決生活中簡(jiǎn)單的實(shí)際問題,使學(xué)生感受到學(xué)習(xí)單調(diào)性的必要性與重要性,增強(qiáng)學(xué)生學(xué)習(xí)函數(shù)的緊迫感,激發(fā)其積極性。

      在本節(jié)課的教學(xué)中以函數(shù)的單調(diào)性的概念為線,它始終貫穿于教師的整個(gè)課堂教學(xué)過程和學(xué)生的學(xué)習(xí)過程;利用函數(shù)的單調(diào)性的定義證明簡(jiǎn)單函數(shù)的單調(diào)性是對(duì)函數(shù)單調(diào)性概念的深層理解,且“取值、作差與變形、判斷、結(jié)論”過程學(xué)生不易掌握。所以對(duì)教學(xué)的重點(diǎn)、難點(diǎn)確定如下:

      教學(xué)重點(diǎn):函數(shù)的單調(diào)性的判斷與證明;

      教學(xué)難點(diǎn):增、減函數(shù)形式化定義的形成及利用函數(shù)單調(diào)性的定義證明簡(jiǎn)單函數(shù)的單調(diào)性。

      四、教材內(nèi)容簡(jiǎn)析:

      本節(jié)主要內(nèi)容如下:

      (1)單調(diào)性的相關(guān)定義:一般地,設(shè)函數(shù)的定義域?yàn)镮,區(qū)間AI:如果對(duì)于區(qū)間A內(nèi)的任意兩個(gè)值,當(dāng)時(shí)都有,那么就說在區(qū)間A上是增加(減少)的。此時(shí),A是單調(diào)遞增(遞減)區(qū)間。

      注:關(guān)鍵詞:“區(qū)間AI:”、“任意”、“都”。區(qū)間AI表明判斷函數(shù)單調(diào)性首先判斷函數(shù)的定義域,“任意”表明不可以用兩個(gè)特定的值來確定函數(shù)是增函數(shù)還是減函數(shù),但是可以用來否定函數(shù)是增函數(shù)或者否定函數(shù)是減函數(shù),“都”表示單調(diào)區(qū)間中的每一個(gè)值無一例外。

      如果函數(shù)在定義域的某個(gè)子集上是增加或減少的,那么就稱這個(gè)函數(shù)在這個(gè)子集上具有單調(diào)性。如果函數(shù)在定義域是增加或減少的,那么就分別稱這個(gè)函數(shù)為增函數(shù)或減函數(shù),統(tǒng)稱為單調(diào)函數(shù)。

      (2)單調(diào)性的判斷與證明:

      ①單調(diào)性的判斷:圖像法、定義法;(注:兩個(gè)單調(diào)區(qū)間的“并”不一定是單調(diào)區(qū)間。)

      ②單調(diào)性的證明步驟歸結(jié)為五個(gè)步驟:取值、作差與變形、判斷、結(jié)論。

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)5

      一、教學(xué)目標(biāo)

      2、 過程與方法目標(biāo):通過讓學(xué)生探 究點(diǎn)、線、面之間的相互關(guān)系,掌握文字語(yǔ)言、符號(hào)語(yǔ)言、圖示語(yǔ) 言之間的相互轉(zhuǎn)化。

      3、 情感、態(tài)度與價(jià)值目標(biāo):通過用集合論 的觀點(diǎn)和運(yùn)動(dòng)的觀點(diǎn)討論點(diǎn)、線、面、體之間的相互關(guān)系培養(yǎng)學(xué)生會(huì)從多角度,多方面觀察和分析問題,體會(huì)將理論知識(shí)和現(xiàn)實(shí)生活建立聯(lián)系的快樂,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

      二、教學(xué)重點(diǎn)和難點(diǎn)

      重點(diǎn):點(diǎn)、線、面之間的相互關(guān)系,以及文字語(yǔ)言、符號(hào)語(yǔ)言、圖示語(yǔ)言之間的相互轉(zhuǎn)化。

      難點(diǎn):從集合的角度理解點(diǎn)、線、面之間的相互關(guān)系。

      三、教學(xué)方法和教學(xué)手段

      在上課前將問題用學(xué)案的形式發(fā)給各組學(xué)生,讓學(xué)生先在課下研究探討,在課上以小組為單位就學(xué)案中的問題展開討論并發(fā)表自己組的研究結(jié)果,并引導(dǎo)同學(xué)展開爭(zhēng)論,同時(shí)利用課件給 同學(xué)一個(gè)直觀的展示,然后得出結(jié)論。下附學(xué)生的學(xué)案

      四、教學(xué)過程

      教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動(dòng) 設(shè)計(jì)意圖

      課題引入 讓同學(xué)們觀察幾個(gè)幾何體,從感性上對(duì)幾何體有個(gè)初步的認(rèn)識(shí),并總結(jié)出空間立體幾何研究的幾個(gè)基本元素。 學(xué)生觀察、討論、總結(jié),教師引導(dǎo)。 提高學(xué)生的學(xué)習(xí)興趣

      新課講解

      基礎(chǔ)知識(shí)

      能力拓展

      探索研究 一、構(gòu)成幾何體的基本元素。

      點(diǎn)、線、面

      二、從集合的角度解釋點(diǎn)、線、面、體之間的相互關(guān)系。

      點(diǎn)是元素,直線是點(diǎn)的集合,平面是點(diǎn)的集合,直線是平面的子集。

      三、從運(yùn)動(dòng)學(xué)的角度解釋點(diǎn)、線、面、體之間的相互關(guān)系。

      1、 點(diǎn)運(yùn)動(dòng)成直線和曲線。

      2、 直線有兩種運(yùn)動(dòng)方式:平行移動(dòng)和繞點(diǎn)轉(zhuǎn)動(dòng)。

      3、 平行移動(dòng)形成平面和曲面。

      4、 繞點(diǎn)轉(zhuǎn)動(dòng)形成平面和曲面。

      5、 注意直線的兩種運(yùn)動(dòng)方式形成的曲面的區(qū)別。

      6、 面運(yùn)動(dòng)成體。

      四、點(diǎn)、線、面、之間的相互位置關(guān)系。

      1、 點(diǎn)和線的位置關(guān)系。

      點(diǎn)A

      2、 點(diǎn)和面的位置關(guān)系。

      3、 直線和直線的位置關(guān)系。

      4 、 直線和平面的位置關(guān)系。

      5、 平面和平面的位置關(guān)系。 通過對(duì)幾何體的觀察、討論由學(xué)生自己總結(jié)。

      引領(lǐng)學(xué)生回憶元素、集合的相互關(guān)系,討論、歸納點(diǎn)、線、面之間的相互關(guān)系。

      通過課件演示及學(xué)生的討論,得出從 運(yùn)動(dòng)學(xué)的角度發(fā)現(xiàn)點(diǎn)、線、面之間的相互關(guān)系。

      引導(dǎo)學(xué)生由生活中的實(shí)際例子總結(jié)出點(diǎn)、線、面之間的相互位置關(guān)系,讓學(xué)生有個(gè)感性認(rèn)識(shí)。 培養(yǎng)學(xué)生的觀察能力。

      培養(yǎng)學(xué)生將所學(xué)知識(shí)建立相互聯(lián)系的能力。

      讓學(xué)生在觀察中發(fā)現(xiàn)點(diǎn)、線、面之間的相互運(yùn)動(dòng)規(guī)律,為以后學(xué)習(xí)幾何體奠定基礎(chǔ)。

      培養(yǎng)學(xué)生將學(xué)習(xí)聯(lián)系實(shí)際的習(xí)慣,鍛煉學(xué)生由感性認(rèn)識(shí)上升為理性知識(shí)的'能力。

      課堂小結(jié) 1、 學(xué)習(xí)了構(gòu)成幾何體的基本元素。

      2、 掌握了點(diǎn)、線、面之間的相互關(guān)系。

      3、 了解了點(diǎn)、線、面之間的相互的位置關(guān)系。 由學(xué)生總結(jié)歸納。 培養(yǎng)學(xué)生總結(jié)、歸納、反思的學(xué)習(xí)習(xí)慣。

      課后作業(yè) 試著畫出點(diǎn)、線、面之間的幾種位置關(guān)系。 學(xué)生課后研究完成。 檢驗(yàn)學(xué)生上課的聽課效果及觀察能力。

      附:1.1.1構(gòu)成空間幾何體的基本元素學(xué)案

      (一)、基礎(chǔ)知識(shí)

      1、 幾何體:________________________________________________________________

      2、 長(zhǎng)方體:________________________________ ___________________________ _____

      3、 長(zhǎng)方體的面:____________________________________________________________

      4、 長(zhǎng)方體的棱: ____________________________________________________________

      5、 長(zhǎng)方體的頂點(diǎn):__________________________________________________________

      6、 構(gòu)成幾何體的基本元素:__________________________________________________

      7、 你能說出構(gòu)成幾何體的 幾個(gè)基本元素之間的關(guān)系嗎?

      (二)、能力拓展

      1、 如果點(diǎn)做連續(xù)運(yùn)動(dòng),運(yùn)動(dòng)出來的軌跡可能是______________________ 因此點(diǎn)是立體幾何中的最基本的元素,如果點(diǎn)運(yùn)動(dòng)的方向不變,則運(yùn)動(dòng)的軌跡是_____________ 如果點(diǎn)運(yùn)動(dòng)的軌跡改變,則運(yùn)動(dòng)的軌跡是________ ____ 試舉幾個(gè)日常生活中點(diǎn)運(yùn)動(dòng)成線的例子___ ________________________________

      2、 在空間中你認(rèn)為直線有幾種運(yùn)動(dòng)方式_______________________________________分別形成_______________________________________________________你能舉幾個(gè)日常生活中的例子嗎?

      3、 你知道直線和線段的區(qū)別嗎?_______________________________________如果是線段做上述運(yùn)動(dòng),結(jié)果如何?_______________________________________.現(xiàn)在你能總結(jié)出平面和面的區(qū)別嗎?______________________________________________

      (三)、探索與研究

      1、 構(gòu)成幾何體的基本元素是_________,__________,____________.

      2、 點(diǎn)和線能有幾種位置關(guān)系_________________________你能畫圖說明嗎?

      3、 點(diǎn)和平面能有幾種位置關(guān)系_______________________你能畫圖說明嗎?

      4、 直線和直線能有幾種位置關(guān)系________________________你能畫圖說明嗎?

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)6

      教學(xué)目標(biāo):①掌握對(duì)數(shù)函數(shù)的性質(zhì)。

      ②應(yīng)用對(duì)數(shù)函數(shù)的性質(zhì)可以解決:對(duì)數(shù)的大小比較,求復(fù)合函數(shù)的`定義域、值 域及單調(diào)性。

      ③ 注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高解題能力。

      教學(xué)重點(diǎn)與難點(diǎn):對(duì)數(shù)函數(shù)的性質(zhì)的應(yīng)用。

      教學(xué)過程設(shè)計(jì):

      ⒈復(fù)習(xí)提問:對(duì)數(shù)函數(shù)的概念及性質(zhì)。

      ⒉開始正課

      1 比較數(shù)的大小

      例 1 比較下列各組數(shù)的大小。

      ⑴loga5.1 ,loga5.9 (a>0,a≠1)

      ⑵log0.50.6 ,logЛ0.5 ,lnЛ

      師:請(qǐng)同學(xué)們觀察一下⑴中這兩個(gè)對(duì)數(shù)有何特征?

      生:這兩個(gè)對(duì)數(shù)底相等。

      師:那么對(duì)于兩個(gè)底相等的對(duì)數(shù)如何比大小?

      生:可構(gòu)造一個(gè)以a為底的對(duì)數(shù)函數(shù),用對(duì)數(shù)函數(shù)的單調(diào)性比大小。

      師:對(duì),請(qǐng)敘述一下這道題的解題過程。

      生:對(duì)數(shù)函數(shù)的單調(diào)性取決于底的大小:當(dāng)0

      調(diào)遞減,所以loga5.1>loga5.9 ;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞增,所以loga5.1

      板書:

      解:Ⅰ)當(dāng)0

      ∵5.1<5.9 loga5.1="">loga5.9

      Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1<5.9 ∴l(xiāng)oga5.1

      師:請(qǐng)同學(xué)們觀察一下⑵中這三個(gè)對(duì)數(shù)有何特征?

      生:這三個(gè)對(duì)數(shù)底、真數(shù)都不相等。

      師:那么對(duì)于這三個(gè)對(duì)數(shù)如何比大小?

      生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnл>1,

      log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

      板書:略。

      師:比較對(duì)數(shù)值的大小常用方法:①構(gòu)造對(duì)數(shù)函數(shù),直接利用對(duì)數(shù)函數(shù) 的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對(duì)數(shù)函數(shù)圖象的位置關(guān)系來比大小。

      2 函數(shù)的定義域, 值 域及單調(diào)性。

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)7

      重點(diǎn)難點(diǎn)教學(xué):

      1、正確理解映射的概念;

      2、函數(shù)相等的兩個(gè)條件;

      3、求函數(shù)的定義域和值域。

      一。教學(xué)過程:

      1、 使學(xué)生熟練掌握函數(shù)的概念和映射的定義;

      2、 使學(xué)生能夠根據(jù)已知條件求出函數(shù)的定義域和值域;

      3. 使學(xué)生掌握函數(shù)的`三種表示方法。

      二。教學(xué)內(nèi)容:

      1、函數(shù)的定義

      設(shè)A、B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)()fx和它對(duì)應(yīng),那么稱:fAB?為從集合A到集合B的一個(gè)函數(shù)(function),記作:

      (),yf_A

      其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對(duì)應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{()|}f_A?叫值域(range)。顯然,值域是集合B的子集。

      注意:

      ① “y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

      ②函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

      2、構(gòu)成函數(shù)的三要素 定義域、對(duì)應(yīng)關(guān)系和值域。

      3、映射的定義

      設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意

      一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從 集合A到集合B的一個(gè)映射。

      4、 區(qū)間及寫法:

      設(shè)a、b是兩個(gè)實(shí)數(shù),且a

      (1) 滿足不等式axb??的實(shí)數(shù)x的集合叫做閉區(qū)間,表示為[a,b];

      (2) 滿足不等式axb??的實(shí)數(shù)x的集合叫做開區(qū)間,表示為(a,b);

      5、函數(shù)的三種表示方法 ①解析法 ②列表法 ③圖像法

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)8

      學(xué)習(xí)目標(biāo)

      1.結(jié)合二次函數(shù)的圖象,判斷一元二次方程根的存在性及根的個(gè)數(shù),從而了解函數(shù)的零點(diǎn)與方程根的聯(lián)系;

      2.掌握零點(diǎn)存在的判定定理.

      學(xué)習(xí)過程

      一、課前準(zhǔn)備

      (預(yù)習(xí)教材P86~P88,找出疑惑之處)

      復(fù)習(xí)1:一元二次方程+bx+c=0(a0)的解法.

      判別式=.

      當(dāng)0,方程有兩根,為;

      當(dāng)0,方程有一根,為;

      當(dāng)0,方程無實(shí)根.

      復(fù)習(xí)2:方程+bx+c=0(a0)的根與二次函數(shù)y=ax+bx+c(a0)的圖象之間有什么關(guān)系?

      判別式一元二次方程二次函數(shù)圖象

      二、新課導(dǎo)學(xué)

      ※學(xué)習(xí)探究

      探究任務(wù)一:函數(shù)零點(diǎn)與方程的根的關(guān)系

      問題:

      ①方程的解為,函數(shù)的圖象與x軸有個(gè)交點(diǎn),坐標(biāo)為.

      ②方程的解為,函數(shù)的圖象與x軸有個(gè)交點(diǎn),坐標(biāo)為.

      ③方程的解為,函數(shù)的圖象與x軸有個(gè)交點(diǎn),坐標(biāo)為.

      根據(jù)以上結(jié)論,可以得到:

      一元二次方程的根就是相應(yīng)二次函數(shù)的圖象與x軸交點(diǎn)的.

      你能將結(jié)論進(jìn)一步推廣到嗎?

      新知:對(duì)于函數(shù),我們把使的實(shí)數(shù)x叫做函數(shù)的零點(diǎn)(zeropoint).

      反思:

      函數(shù)的零點(diǎn)、方程的實(shí)數(shù)根、函數(shù)的圖象與x軸交點(diǎn)的橫坐標(biāo),三者有什么關(guān)系?

      試試:

      (1)函數(shù)的零點(diǎn)為;(2)函數(shù)的'零點(diǎn)為.

      小結(jié):方程有實(shí)數(shù)根函數(shù)的圖象與x軸有交點(diǎn)函數(shù)有零點(diǎn).

      探究任務(wù)二:零點(diǎn)存在性定理

      問題:

      ①作出的圖象,求的值,觀察和的符號(hào)

      ②觀察下面函數(shù)的圖象,

      在區(qū)間上零點(diǎn);0;

      在區(qū)間上零點(diǎn);0;

      在區(qū)間上零點(diǎn);0.

      新知:如果函數(shù)在區(qū)間上的圖象是連續(xù)不斷的一條曲線,并且有<0,那么,函數(shù)在區(qū)間內(nèi)有零點(diǎn),即存在,使得,這個(gè)c也就是方程的根.

      討論:零點(diǎn)個(gè)數(shù)一定是一個(gè)嗎?逆定理成立嗎?試結(jié)合圖形來分析.

      ※典型例題

      例1求函數(shù)的零點(diǎn)的個(gè)數(shù).

      變式:求函數(shù)的零點(diǎn)所在區(qū)間.

      小結(jié):函數(shù)零點(diǎn)的求法.

      ①代數(shù)法:求方程的實(shí)數(shù)根;

      ②幾何法:對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

      ※動(dòng)手試試

      練1.求下列函數(shù)的零點(diǎn):

      (1);

      (2).

      練2.求函數(shù)的零點(diǎn)所在的大致區(qū)間.

      三、總結(jié)提升

      ※學(xué)習(xí)小結(jié)

      ①零點(diǎn)概念;②零點(diǎn)、與x軸交點(diǎn)、方程的根的關(guān)系;③零點(diǎn)存在性定理

      ※知識(shí)拓展

      圖象連續(xù)的函數(shù)的零點(diǎn)的性質(zhì):

      (1)函數(shù)的圖象是連續(xù)的,當(dāng)它通過零點(diǎn)時(shí)(非偶次零點(diǎn)),函數(shù)值變號(hào).

      推論:函數(shù)在區(qū)間上的圖象是連續(xù)的,且,那么函數(shù)在區(qū)間上至少有一個(gè)零點(diǎn).

      (2)相鄰兩個(gè)零點(diǎn)之間的函數(shù)值保持同號(hào).

      學(xué)習(xí)評(píng)價(jià)

      ※自我評(píng)價(jià)你完成本節(jié)導(dǎo)學(xué)案的情況為().

      A.很好B.較好C.一般D.較差

      ※當(dāng)堂檢測(cè)(時(shí)量:5分鐘滿分:10分)計(jì)分:

      1.函數(shù)的零點(diǎn)個(gè)數(shù)為().

      A.1B.2C.3D.4

      2.若函數(shù)在上連續(xù),且有.則函數(shù)在上().

      A.一定沒有零點(diǎn)B.至少有一個(gè)零點(diǎn)

      C.只有一個(gè)零點(diǎn)D.零點(diǎn)情況不確定

      3.函數(shù)的零點(diǎn)所在區(qū)間為().

      A.B.C.D.

      4.函數(shù)的零點(diǎn)為.

      5.若函數(shù)為定義域是R的奇函數(shù),且在上有一個(gè)零點(diǎn).則的零點(diǎn)個(gè)數(shù)為.

      課后作業(yè)

      1.求函數(shù)的零點(diǎn)所在的大致區(qū)間,并畫出它的大致圖象.

      2.已知函數(shù).

      (1)為何值時(shí),函數(shù)的圖象與軸有兩個(gè)零點(diǎn);

      (2)若函數(shù)至少有一個(gè)零點(diǎn)在原點(diǎn)右側(cè),求值.

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)9

      一、教材分析

      圓是解析幾何中一類重要的曲線,是在學(xué)生學(xué)習(xí)了直線與方程的基礎(chǔ)知識(shí)之后,知道了在直角坐標(biāo)系中通過建立方程可以達(dá)到研究圖形性質(zhì),圓的標(biāo)準(zhǔn)方程正是這一知識(shí)運(yùn)用的延續(xù),為后面學(xué)習(xí)其他圓錐曲線的方程奠定了基礎(chǔ)。本節(jié)內(nèi)容在教材體系中起到承上啟下的作用,具有重要的地位,在許多實(shí)際問題中也有著廣泛的應(yīng)用。

      二、教學(xué)目標(biāo)

      1、知識(shí)與技能:

      (1)會(huì)用定義推導(dǎo)圓的標(biāo)準(zhǔn)方程并掌握?qǐng)A的標(biāo)準(zhǔn)方程的特征.

      (2)會(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程.

      (3)會(huì)判斷點(diǎn)與圓的位置關(guān)系.

      2、過程與方法:滲透數(shù)形結(jié)合思想,加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)待定系數(shù)法的運(yùn)用,注意培養(yǎng)學(xué)生觀察問題和解決問題的能力.

      3、情感態(tài)度和價(jià)值觀:通過運(yùn)用圓的知識(shí)解決實(shí)際問題的學(xué)習(xí),從而激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和興趣.

      三、教學(xué)重點(diǎn)

      掌握?qǐng)A的標(biāo)準(zhǔn)方程的'特征,能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程.

      四、教學(xué)難點(diǎn)

      根據(jù)已知條件,會(huì)利用待定系數(shù)法和幾何法求圓的標(biāo)準(zhǔn)方程.

      五、教學(xué)方法

      采用“合作探究”教學(xué)法.

      六、教學(xué)過程設(shè)計(jì)

      問題

      師生活動(dòng)

      設(shè)計(jì)意圖

      我們已經(jīng)學(xué)習(xí)了圓的概念和平面直角坐標(biāo)系,若將圓放到平面直角坐標(biāo)系內(nèi),如何借助坐標(biāo)描述圓的方程呢?

      回憶前面學(xué)習(xí)的要點(diǎn),引入這節(jié)課所要學(xué)習(xí)的內(nèi)容.

      從圓的定義引出圓的方程。

      具有什么性質(zhì)的點(diǎn)的軌跡稱為圓?

      學(xué)生回答

      (平面內(nèi)到一個(gè)定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合)

      復(fù)習(xí)圓的定義,為后面推導(dǎo)圓的方程作鋪墊.

      在直角坐標(biāo)系中,確定圓的條件是什么?

      學(xué)生集體回答

      (圓心和半徑)

      師生合作,復(fù)習(xí)舊知識(shí),引出新知識(shí)

      已知圓心坐標(biāo)(a,b),半徑為r,如何寫出圓的方程?

      師生共同推導(dǎo)出圓的標(biāo)準(zhǔn)方程.

      (設(shè)點(diǎn)M

      (x,y)為圓C上任一點(diǎn),則圓上所有點(diǎn)的集合為:

      P={M||MC|=r}

      則

      即(x-a)2+(y-b)2=r2(xx)

      因此,

      (1)點(diǎn)M的坐標(biāo)適合方程(xx)

      (2)方程(xx)說明點(diǎn)M與圓心C的距離為r,即點(diǎn)M在圓C上。)

      讓學(xué)生體會(huì)圓的方程的推導(dǎo)過程.

      例1:求圓心和半徑

      ⑴圓(x+3)2+y2=5

      ⑵圓(x+1)2+(y-3)2=9

      ⑶圓x2+y2=4

      學(xué)生集體回答,并及時(shí)根據(jù)學(xué)生的回答過程中出現(xiàn)的問題進(jìn)行糾正.

      讓學(xué)生初步應(yīng)用圓的標(biāo)準(zhǔn)方程,體會(huì)圓的標(biāo)準(zhǔn)方程帶來的信息.

      練習(xí):分別求滿足下列各條件的圓的方程:

      (1)圓心是原點(diǎn),半徑是3;

      (2)圓心為C(3,4),半徑是;

      (3)經(jīng)過點(diǎn)P(5,1),圓心是點(diǎn)C(8,-3)

      學(xué)生個(gè)別回答,并及時(shí)糾正學(xué)生出現(xiàn)的問題.

      讓學(xué)生體會(huì)到要想求圓的標(biāo)準(zhǔn)方程,關(guān)鍵是求出圓心和半徑.

      例2:已知圓的方程為x2+y2=4,判斷點(diǎn)A(1,1)、B(3,0)、C()是否在這個(gè)圓上.

      學(xué)生說出圓的方程,老師引導(dǎo)學(xué)生得出判斷點(diǎn)是否在圓上的方法:把點(diǎn)的坐標(biāo)代入圓的方程,看看方程是否成立.

      學(xué)會(huì)應(yīng)用圓的方程判斷點(diǎn)和圓的位置關(guān)系.

      探究:點(diǎn)Mc(x0,y0)在圓(x-a)2+(y-b)2=r2上、內(nèi)、外的條件是什么?

      引導(dǎo)學(xué)生從點(diǎn)到圓心的距離和半徑的大小關(guān)系來判斷點(diǎn)和圓的位置條件:

      (x0-a)2+(y0-b)2=r2點(diǎn)M0在圓上;

      (x0-a)2+(y0-b)2

      (x0-a)2+(y0-b)2>r2點(diǎn)M0在圓外.

      讓學(xué)生體會(huì)數(shù)形結(jié)合思想在解析幾何的應(yīng)用.

      例3:求經(jīng)過點(diǎn)A(1,-1)和B(-1,1)

      兩點(diǎn),且圓心C在直線l:

      x+y-2=0上的圓的標(biāo)準(zhǔn)方程.

      學(xué)生會(huì)用待定系數(shù)法求圓的方程.

      引導(dǎo)學(xué)生從弦的垂直平分線過圓心(定義法)來求圓的方程:

      (1)先確定圓心的位置

      (弦的垂直平分線的交點(diǎn));

      (2)求出圓心的坐標(biāo);

      (3)求出半徑;

      (4)寫出圓的方程。

      再一次讓學(xué)生體會(huì)用數(shù)形結(jié)合的思想來解決數(shù)學(xué)問題.

      求圓的標(biāo)準(zhǔn)方程:

      (1)待定系數(shù)法;

      (2)定義法.

      師生共同總結(jié)兩種方法的優(yōu)缺點(diǎn)

      (待定系數(shù)法思路清晰,但計(jì)算比較繁雜;幾何法計(jì)算比較簡(jiǎn)單,比較常用)

      對(duì)兩種方法進(jìn)行總結(jié),比較其優(yōu)缺點(diǎn)的不同.

      練習(xí):

      (1)已知兩點(diǎn)P1(4,9),P2(6,3),求以線段P1P2為直徑的圓的方程。

      (2)已知△AOB的頂點(diǎn)坐標(biāo)是A(4,0),B(0,3),C(0,0),求△AOB外接圓的方程.

      學(xué)生練習(xí),體會(huì)兩種方法的優(yōu)缺點(diǎn),教師點(diǎn)評(píng).

      讓學(xué)生更進(jìn)一步去體會(huì)和理解兩種方法的不同.

      小結(jié):

      (1)圓的標(biāo)準(zhǔn)方程

      (2)點(diǎn)與圓的位置關(guān)系

      (3)求圓的標(biāo)準(zhǔn)方程2鐘方法:待定系數(shù)法和定義法

      師生共同總結(jié)本節(jié)課的主要內(nèi)容.

      總結(jié)歸納主要內(nèi)容.

      作業(yè):練習(xí)冊(cè)相應(yīng)內(nèi)容

      鞏固本節(jié)所學(xué)知識(shí)

      七、板書設(shè)計(jì)

      2.1圓的標(biāo)準(zhǔn)方程

      1.圓心圓心是C(a,b),半徑是r的圓的標(biāo)準(zhǔn)方程:(x-a)2+(y-b)2=r2

      2.點(diǎn)Mc(x0,y0)和圓(x-a)2+(y-b)2=r2的位置關(guān)系:

      (x0-a)2+(y0-b)2=r2點(diǎn)M0在圓上;

      (x0-a)2+(y0-b)2

      (x0-a)2+(y0-b)2>r2點(diǎn)M0在圓外。

      3.求圓的標(biāo)準(zhǔn)方程方法:

      (1)待定系數(shù)法;

      (2)定義法;

      例3:

      (待定系數(shù)法)

      (定義法)

      八、教學(xué)反思

      利用圓的標(biāo)準(zhǔn)方程由淺入深的解決問題,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)。為了培養(yǎng)學(xué)生的理性思維,在例題3中用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生創(chuàng)新精神,同時(shí)鍛煉了學(xué)生的思維能力。

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)10

      教學(xué)目標(biāo)

      1、 知識(shí)與技能

      (1)理解并掌握正弦函數(shù)的定義域、值域、周期性、最大(小)值、單調(diào)性、奇偶性;

      (2)能熟練運(yùn)用正弦函數(shù)的性質(zhì)解題。

      2、 過程與方法

      通過正弦函數(shù)在R上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。

      3、 情感態(tài)度與價(jià)值觀

      通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗(yàn)自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識(shí)到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學(xué)生形成實(shí)事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。

      教學(xué)重難點(diǎn)

      重點(diǎn): 正弦函數(shù)的性質(zhì)。

      難點(diǎn): 正弦函數(shù)的性質(zhì)應(yīng)用。

      教學(xué)工具

      投影儀

      教學(xué)過程

      【創(chuàng)設(shè)情境,揭示課題】

      同學(xué)們,我們?cè)跀?shù)學(xué)一中已經(jīng)學(xué)過函數(shù),并掌握了討論一個(gè)函數(shù)性質(zhì)的幾個(gè)角度,你還記得有哪些嗎?在上一次課中,我們已經(jīng)學(xué)習(xí)了正弦函數(shù)的y=sinx在R上圖像,下面請(qǐng)同學(xué)們根據(jù)圖像一起討論一下它具有哪些性質(zhì)?

      【探究新知】

      讓學(xué)生一邊看投影,一邊仔細(xì)觀察正弦曲線的圖像,并思考以下幾個(gè)問題:

      (1) 正弦函數(shù)的定義域是什么?

      (2) 正弦函數(shù)的值域是什么?

      (3) 它的最值情況如何?

      (4) 它的正負(fù)值區(qū)間如何分?

      (5) ?(x)=0的'解集是多少?

      師生一起歸納得出:

      1. 定義域:y=sinx的定義域?yàn)镽

      2. 值域:引導(dǎo)回憶單位圓中的正弦函數(shù)線,

      結(jié)論:(有界性)

      再看正弦函數(shù)線(圖象)驗(yàn)證上述結(jié)論,所以y=sinx的值域?yàn)閇-1,1]

      課后小結(jié)

      歸納整理,整體認(rèn)識(shí)

      (1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過的知識(shí)內(nèi)容有哪些?所涉及的主要數(shù)學(xué)思想方法有哪些?

      (2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請(qǐng)向老師提出。

      (3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

      課后習(xí)題

      作業(yè):習(xí)題1—4第3、4、5、6、7題。

      板書

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)11

      一、指導(dǎo)思想

      準(zhǔn)確把握《教學(xué)大綱》和《考試大綱》的各項(xiàng)基本要求,立足于基礎(chǔ)知識(shí)和基本技能的教學(xué),注重滲透數(shù)學(xué)思想和方法。針對(duì)學(xué)生實(shí)際,不斷研究數(shù)學(xué)教學(xué),改進(jìn)教法,指導(dǎo)學(xué)法,奠定立足社會(huì)所需要的必備的基礎(chǔ)知識(shí)、基本技能和基本能力,著力于培養(yǎng)學(xué)生的創(chuàng)新精神,運(yùn)用數(shù)學(xué)的意識(shí)和能力,奠定他們終身學(xué)習(xí)的基礎(chǔ)。

      二、高一上冊(cè)數(shù)學(xué)教學(xué)教材特點(diǎn):

      我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(A版)》,它在堅(jiān)持我國(guó)數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承、借簽、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有如下特點(diǎn):

      1.親和力:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情.

      2.問題性:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識(shí),孕育創(chuàng)新精神.

      3.科學(xué)性與思想性:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比、化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神.

      4.時(shí)代性與應(yīng)用性:以具有時(shí)代感和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識(shí).

      三、高一上冊(cè)數(shù)學(xué)教學(xué)教法分析:

      1.選取與內(nèi)容密切相關(guān)的、典型的、豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語(yǔ)言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的`概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對(duì)數(shù)學(xué)的親切感,引發(fā)學(xué)生看個(gè)究竟的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的.

      2.通過觀察,思考,探究等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式.

      3.在教學(xué)中強(qiáng)調(diào)類比、化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣.

      四、學(xué)情分析

      高一作為起始年級(jí),作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著.他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長(zhǎng).面對(duì)新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望.我們要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡.從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法.

      五、高一上冊(cè)數(shù)學(xué)教學(xué)教學(xué)措施:

      1、激發(fā)學(xué)生的學(xué)習(xí)興趣.由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。

      2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對(duì)比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識(shí);注意從已有的知識(shí)出發(fā),啟發(fā)學(xué)生思考.

      3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力和解決實(shí)際問題的能力,提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育.

      4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力.

      5、重視數(shù)學(xué)應(yīng)用意識(shí)及應(yīng)用能力的培養(yǎng).

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)12

      教學(xué)類型:探究研究型

      設(shè)計(jì)思路:通過一系列的猜想得出德.摩根律,但是這個(gè)結(jié)論僅僅是猜想,數(shù)學(xué)是一門科學(xué),所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗(yàn)證猜想的正確性,并對(duì)德摩根律進(jìn)行簡(jiǎn)單的應(yīng)用,因此我們制作了本微課.

      教學(xué)過程:

      一、片頭

      (20秒以內(nèi))

      內(nèi)容:你好,現(xiàn)在讓我們一起來學(xué)習(xí)《集合的運(yùn)算——自己探索也能發(fā)現(xiàn)的數(shù)學(xué)規(guī)律(第二講)》。

      第 1 張PPT

      12秒以內(nèi)

      二、正文講解

      (4分20秒左右)

      1.引入:牛頓曾說過:“沒有大膽的猜測(cè),就做不出偉大的發(fā)現(xiàn)。”

      上節(jié)課老師和大家學(xué)習(xí)了集合的運(yùn)算,得出了一個(gè)有趣的規(guī)律。課后,你舉例驗(yàn)證了這個(gè)規(guī)律嗎?

      那么,這個(gè)規(guī)律是偶然的,還是一個(gè)恒等式呢?

      第 2 張PPT

      28秒以內(nèi)

      2.規(guī)律的驗(yàn)證:

      試用集合A,B的交集、并集、補(bǔ)集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗(yàn)證猜想的正確性使用

      第 3 張PPT

      2分10 秒以內(nèi)

      3.抽象概括: 通過我們的觀察和驗(yàn)證,我們發(fā)現(xiàn)這個(gè)規(guī)律是一個(gè)恒等式。

      而這個(gè)規(guī)律就是180年前著名的.英國(guó)數(shù)學(xué)家德摩根發(fā)現(xiàn)的。

      為了紀(jì)念他,我們將它稱為德摩根律。

      原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。

      第 4 張PPT

      30秒以內(nèi)

      4.例題應(yīng)用:使用例題形式,將的德摩根定律的結(jié)論加以應(yīng)用,讓學(xué)生更加熟悉集合的運(yùn)算

      第 5 張PPT

      1分20秒以內(nèi)

      三、結(jié)尾

      (20秒以內(nèi))

      通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運(yùn)算問題提供了更為簡(jiǎn)便的方法。

      希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。

      第 6 張PPT

      10秒以內(nèi)

      教學(xué)反思(自我評(píng)價(jià))

      學(xué)生在學(xué)習(xí)集合時(shí)會(huì)接觸到很多的集合運(yùn)算,往往學(xué)生覺得這是集合中的難點(diǎn),因此本節(jié)課通過一系列的猜想,以精彩的動(dòng)畫展示,讓學(xué)生在直觀的環(huán)境下輕松的學(xué)習(xí),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并通過層層深入的講解,讓學(xué)生進(jìn)一步加強(qiáng)對(duì)集合運(yùn)算的理解和應(yīng)用能力,效果非常好.

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)13

      課題:

      《直線與平面垂直的性質(zhì)》

      課時(shí):

      11

      學(xué)習(xí)目標(biāo):

      探究線面垂直的性質(zhì)定理,培養(yǎng)學(xué)生的空間想象能力;

      掌握性質(zhì)定理的應(yīng)用,提高邏輯推理能力。

      重點(diǎn) 難點(diǎn):

      線面垂直的性質(zhì)定理及其應(yīng)用

      學(xué)習(xí)過程:

      復(fù)習(xí)鞏固:直線與平面垂直的判定定理是什么?

      學(xué)習(xí)新知:

      1、注意觀察右面兩個(gè)圖,在長(zhǎng)方體ABCD-A’B’C’D”中,棱AA’、BB’、CC’、DD’都與平面ABCD垂直,它們之間具有什么什么關(guān)系?

      2、右圖中,已知直線a,b和平面α,如果a⊥α,b⊥α那么直線a,b是否平行呢?

      直線與平面垂直的性質(zhì)定理:

      一般地,我們得到直線與平面垂直的性質(zhì)定理

      定理:(文字語(yǔ)言) 垂直于同一平面的兩條直線平行。

      (符號(hào)語(yǔ)言)

      a⊥α, b⊥α? a∥b

      O (圖形語(yǔ)言)如圖: 判定兩條直線平行的方法很多,直線與平面垂直的定理告訴我們,可以由兩條直線與一個(gè)平面垂直判定兩條直線平行。直線與平面垂直的性質(zhì)定理揭示了“平行”與“垂直”之間的內(nèi)在聯(lián)系。

      3、直線與平面垂直的性質(zhì)的'應(yīng)用

      例4、設(shè)直線a,b分別在正方體ABCD-A’B’C’D”中兩個(gè)不同的平面內(nèi),欲使a∥b,則a,b應(yīng)滿足什么條件?

      解:a,b滿足下面條件中的任何一個(gè),都能使a∥b,

      (1)a,b同垂直于正方體一個(gè)面;

      (2)a,b分別在正方體兩個(gè)相對(duì)的面內(nèi)且共面;

      (3)a,b平行于同一條棱;

      (4)如圖,E,F(xiàn),G,H分別為B’C’,CC’,AA’,AD的中點(diǎn),EF所在的直線為a,GH所在直線為b,等等。

      思考:你還能找出其他一些條件嗎?

      練習(xí)p42 1, 2

      作業(yè):P43

    【高一數(shù)學(xué)教學(xué)設(shè)計(jì)】相關(guān)文章:

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)07-07

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)03-29

    高一數(shù)學(xué)《集合運(yùn)算》教學(xué)設(shè)計(jì)07-01

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)9篇05-02

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)(9篇)05-06

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)(精選11篇)08-10

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)9篇05-06

    高一數(shù)學(xué)教學(xué)設(shè)計(jì)匯編9篇05-06

    高一數(shù)學(xué)《函數(shù)概念(微課)》教學(xué)設(shè)計(jì)07-01

    国产乱妇乱子在线播视频播放网站| 国产AV一区二区三区日韩| 国产精品成人久久| 青青河边草直播免费观看| 日韩视频在线观看| 51国产黑色丝袜高跟鞋| 免费看电视剧的网站| 国内精品久久久久久西瓜色吧| 精品久久久久久亚洲中文字幕 | 亚洲欧美国产另类|