淺談數(shù)學(xué)之美的美文
人類對數(shù)學(xué)的認識最早是從自然數(shù)開始的。這看似極普通的自然數(shù)里面,其實就埋藏著數(shù)不盡的奇珍異寶。古希臘的畢達哥拉斯學(xué)派對自然數(shù)很有研究,當他們將這數(shù)不盡的奇珍異寶的一部分挖掘出來并呈現(xiàn)于人類面前時,人們就為這數(shù)的美震撼了。其實,“哪里有數(shù)學(xué),哪里就有美”,這是古代哲學(xué)家對數(shù)學(xué)美的一個高度評價。
一、簡潔美
數(shù)學(xué)中的概念許許多多,但每個概念都是以最精煉、最概括的語言給出的。如在《圖的初步知識》教學(xué)中,可以先讓學(xué)生去探究過兩點的直線有多少條?然后再讓學(xué)生用自己的語言來概括這個結(jié)論,最后教師再給出“兩點確定一條直線”,短短的一句話,簡練嚴謹,內(nèi)涵豐富,充分讓學(xué)生體會了數(shù)學(xué)定理的簡潔之美;又如九年級上圓的定義“圓是到定點的距離等于定長的點的集合”,若無“集合”則形成了點,構(gòu)不成圓,一字之差則情況相差萬里,充分體現(xiàn)了數(shù)學(xué)概念的簡潔美。
歐拉給出的公式:V-E+F=2堪稱“簡單美”的典范。世間的多面體有多少?沒有人能說清楚。但它們的頂點數(shù)V、棱數(shù)E、面數(shù)F,都必須服從歐拉給出的公式,一個如此簡單的公式,概括了無數(shù)種多面體的共同特性,能不令人驚嘆不已?在數(shù)學(xué)中,像歐拉公式這樣形式簡潔、內(nèi)容深刻、作用很大的定理還有許多。
二、和諧美
和諧是數(shù)學(xué)美的最高境界。如果把數(shù)學(xué)比作一座殿堂,那么和諧性是其主要建筑特色,無論從局部或整體來看,都讓人體會到平衡協(xié)調(diào)、相互呼應(yīng)、渾然一體的美感。 歐拉公式:V-E+F=2 曾獲得“最美的數(shù)學(xué)定理”稱號歐拉建立了在他那個時代,數(shù)學(xué)中最重要的幾個常數(shù)之間的絕妙的有趣的聯(lián)系。和諧美,在數(shù)學(xué)中多得不可勝數(shù)。如著名的黃金分割比。即0.61803398…。“黃金分割”問題,為什么它被譽為“黃金”呢?黃金分割比在許多藝術(shù)作品中、在建筑設(shè)計中都有廣泛的應(yīng)用。達?芬奇稱黃金分割比為“神圣比例”。他認為“美感完全建立在各部分之間神圣的比例關(guān)系上”。維納斯的美被所有人所公認,她的身材比也恰恰是黃金分割比。尤其使人驚異的是,許多生物的體形比例也等于黃金比,這些美的信息被充分開發(fā)后,誰能不被數(shù)學(xué)美所陶醉,不為數(shù)學(xué)美而驕傲呢?
古希臘數(shù)學(xué)家畢達哥拉斯有一句至理名言:“凡是美的東西都具有共同的特性,這就是部分與部分、部分與整體之間的和諧性。”
三、對稱美
畢達哥拉斯學(xué)派認為,一切空間圖形中,最美的是球形;一切平面圖形中,最美的是圓形。圓是中心對稱圖形――圓心是它的對稱中心,圓也是軸對稱圖形――任何一條直徑都是它的對稱軸。
對稱美的形式很多,對稱的.這種美也不只是數(shù)學(xué)家獨自欣賞的,人們對于對稱美的追求是自然的、樸素的。如我們喜愛的對數(shù)螺線、雪花,知道它的一部分,就可以知道它的全部。數(shù)學(xué)美學(xué)中的對稱美并不局限于客觀事物外形的對稱。它著重追求的是數(shù)學(xué)對象乃至整個數(shù)學(xué)體系的合理,勻稱與協(xié)調(diào)。數(shù)學(xué)概念,數(shù)學(xué)公式,數(shù)學(xué)運算,數(shù)學(xué)方程式,數(shù)學(xué)結(jié)論甚至數(shù)學(xué)方法中,都蘊含著奇妙的對稱性。
教學(xué)中要讓學(xué)生去體會這樣的對稱思想,利用數(shù)學(xué)的對稱性解決數(shù)學(xué)問題。在數(shù)學(xué)解題中,往往是通過數(shù)學(xué)審美而獲得數(shù)學(xué)美的直覺,使解題經(jīng)驗與審美直覺相配合,激發(fā)數(shù)學(xué)思維中的關(guān)聯(lián)因素,從而產(chǎn)生解題思路。
四、統(tǒng)一美
數(shù)的概念從自然數(shù)、分數(shù)、負數(shù)、無理數(shù),擴大到復(fù)數(shù),經(jīng)歷了無數(shù)次坎坷,范圍不斷擴大了,在數(shù)學(xué)及其他學(xué)科的作用也不斷地增大。那么,人們自然想到能否再把復(fù)數(shù)的概念繼續(xù)推廣。角的概念也是從00―3600推廣到任意角。我們在教學(xué)中不僅僅要教給學(xué)生數(shù)的概念還應(yīng)讓學(xué)生去設(shè)想未來可能還有更大范圍的數(shù)的出現(xiàn),既要知道萬物在不斷的統(tǒng)一,也要知道萬物在不斷的發(fā)展的辯證思想。
五、奇異美
奇異性就是新穎性、開拓性。在無理數(shù)未出現(xiàn)前,人們認為任何兩條線段的長都是可公約的。但后來有人發(fā)現(xiàn)正方形的對角線和邊是不可公約的。這種奇異的結(jié)果,導(dǎo)致數(shù)系的擴大,使人們從有理數(shù)的狹小的圈子跳出來,產(chǎn)生了知識的新飛躍,由此我們不難理解為什么數(shù)學(xué)上以奇為美。著名的雪花曲線是奇異美的典型代表。
數(shù)學(xué)之美,還可以從更多的角度去審視,而每一側(cè)面的美都不是孤立的,它們是相輔相成、密不可分的。它需要人們用心、用智慧深層次地去挖掘,更好地體會它的美學(xué)價值和她豐富、深隧的內(nèi)涵和思想,及其對人類思維的深刻影響。如果在學(xué)習(xí)過程中,我們能與學(xué)生們一起探索、發(fā)現(xiàn),從中獲得成功的喜悅和美的享受,那么我們就會不斷深入其中,欣賞和創(chuàng)造美。提高學(xué)生的審美能力,教師應(yīng)當作為必要的審美示范,引導(dǎo)學(xué)生感知,欣賞數(shù)學(xué)美。另一方面,“從實踐中來,到實踐中去”,只有將“美”的知識應(yīng)用于實踐,審美教育才有意義,學(xué)生的審美能力才能得到進一步提高,當然,教師應(yīng)該注意提高自身的美學(xué)修養(yǎng),有對學(xué)生進行美學(xué)教育的意識,讓學(xué)生體會到數(shù)學(xué)是賞心悅目的,使追求和探索數(shù)學(xué)中的美成為學(xué)生學(xué)習(xí)數(shù)學(xué)的動力,并引導(dǎo)學(xué)生利用數(shù)學(xué)中的美陶冶性情,實現(xiàn)數(shù)學(xué)的文化教育功能。
羅丹說:自然總是美的。伽利略則宣稱道:自然這本書是用數(shù)學(xué)語言寫成的。哪里有數(shù),哪里就有美。數(shù)學(xué)總是美的,數(shù)學(xué)是美的科學(xué)。數(shù)學(xué)美的魅力是誘人的,數(shù)學(xué)美的力量是巨大的,數(shù)學(xué)美的思想是神奇的。它可以改變?nèi)藗冋J為對數(shù)學(xué)枯燥無味的成見,讓人們認識到數(shù)學(xué)也是一個五彩繽紛的美的世界。如果說數(shù)學(xué)使許多人心曠神怡,并為之付出畢生的精力,從而促進了數(shù)學(xué)學(xué)科的飛速發(fā)展,那么,它也一定能夠激發(fā)更多的有志青年追求知識,探索未來的強烈愿望,因為“美”在數(shù)學(xué)中存在。
【淺談數(shù)學(xué)之美的美文】相關(guān)文章:
低調(diào)之美的美文04-14
關(guān)于自然之美的雙語美文05-10
關(guān)于徒勞之美的美文摘抄07-02
安全之美文明之美的安全演講稿07-04
淺談使命美文04-25
淺談緣分的美文06-17
淺談人生的美文06-12
淺談佛系美文04-24