關于小學數(shù)學建模論文
一、充分發(fā)揮學生主觀能動性并對問題進行簡化、假設
學生的想象力是非常豐富的,這對數(shù)學建模來說是很有利的。所以教學時要充分發(fā)揮學生的想象力,讓學生通過小組合作來進一步加深對問題的理解。我們要求的是兩車相遇的時間,那么我們可以通過設一個未知數(shù)來代替它。根據(jù)速度×時間=路程,可以假設時間為x小時,根據(jù)題意列出方程:65x+55x=270
二、學生對簡化的問題進行求解
第三步,就是要給剛才列出的方程,進行變形處理,變成學生熟悉的,易于解答的算式,如上題可以通過乘法分配律將等式寫成120x=270,利用乘法算式各部分間的關系,積÷一個因數(shù)=另一個因數(shù),得x=2.25。有的方程并不是通過一步就能解決,這時就顯示了簡化的重要性,需對方程進行一定的變形、轉(zhuǎn)化。
三、展示和驗證數(shù)學模型
當問題解決后,就要對建立的模型進行檢驗,看看得到的模型是否符合題意,是否符合實際生活。如上題檢驗需將x=2.25帶入原式。左邊=65×2.25+55×2.25=270,右邊=270。左邊=右邊,所以等式成立。在這個過程中,可以體現(xiàn)出學生的數(shù)學思維過程與其建模的邏輯過程。教師對于學生的這方面應進行重點肯定,并鼓勵學生對同學間的數(shù)學模式進行點評。一般而言,在點評時要求學生把相互間的模式優(yōu)點與不足都要盡量說出來,這是一種提高學生對數(shù)學語言運用能力與表達能力的`訓練,也能讓學生在相互探討的過程中,得以開啟思路,博采眾長。
四、數(shù)學模型的應用
來自于生活實際的數(shù)學模式其建模的目的是為了解決實際問題。所以立足于此,建模的實際意義應在于其應用價值。模型應具有普遍適應性,不能是一個模型只能解決一個實際問題,這樣的模型是不符合要求的。所以在建模時需要考慮要建的模型是否有實用價值,是否改變一下,還能通過怎樣的方法進行解題,如果數(shù)學模型只適合一題,不適合相關題,就沒有建立模型的必要。如給出這樣的題目:兩地之間的路程是420千米,一列客車和一列貨車同時從兩個城市相對開出,客車每小時行55千米,火車的速度是客車的1011,兩車開出后幾小時相遇?我們就可以通過剛才的模型來解題。設兩車開出后x小時相遇。55x+55×1011x=420解得x=4將x=4代到方程的左邊=55×4+55×1011×4=420,右邊=420,左邊=右邊,所以x=4是方程的解,符合題意。這樣,完整的數(shù)學模型就建立了。為以后相似類型的題建立了一個模型,遇到這樣的題就可以通過這個模型來做。在小學數(shù)學教學中,許多內(nèi)容都可以在學生的生活實際中找到背景。在數(shù)學建模活動中,向?qū)W生展示的也是他們身邊的事,解決的又是他們碰到的實際問題。因此,讓學生從生活實際出發(fā),創(chuàng)建數(shù)學模型,不僅能夠激發(fā)起他們學習數(shù)學的興趣,讓他們覺得學有所用,更能培養(yǎng)他們的數(shù)學眼光,在碰到問題的時候,能夠從數(shù)學的角度加以思考,而且能夠給他們以后學習打下基礎。再者,在數(shù)學思想中,數(shù)學知識得以形成與體現(xiàn)。而數(shù)學概念則是根據(jù)數(shù)學知識的現(xiàn)象所總結出來的。相關的數(shù)學規(guī)律與數(shù)學問題的解決,更是一種對于數(shù)學思想的實際應用。總的來說,建模思想可以幫助學生更進一步地感悟數(shù)學思想,積累數(shù)學經(jīng)驗,起到舉一反三、觸類旁通的作用。既然,建模具有種種優(yōu)點,其有效運用能為小學數(shù)學教學提供許多幫助,那么何不以此為契機,形成更為開放的數(shù)學教學體系和手段,培養(yǎng)更具主動意識和操作能力的學生呢?
【小學數(shù)學建模論文】相關文章:
簡述小學數(shù)學的建模教學論文09-26
大學數(shù)學建模的論文06-20
數(shù)學建模論文模板07-27
大學數(shù)學建模論文03-12
建模教學下數(shù)學建模論文模板05-31
數(shù)學建模獲獎論文與學生應用數(shù)學素質(zhì)論文06-20
數(shù)學建模在中職院校的作用論文09-25
高職數(shù)學建模分析的論文09-26
論數(shù)學建模與大學教育論文09-26