直線的兩點式方程教學困惑解惑與感悟教育論文
一、問題提出
在上到必修2第三章《直線與方程》時,我們學校同年級教文科的一位新教師問我“直線的兩點式方程要不要上”?對于她問這個問題的原因我可以理解,甚至有同感,教給學生干嗎呢?理由一:既然已經(jīng)學了點斜式方程,直接由直線上的兩點、求出直線的斜率,再由直線的點斜式不就把方程求出來了嘛。理由二:兩點式方程結(jié)構(gòu)復雜,即使教給學生,學生也未必能記住,如果記錯了還不如不教,得不償失。理由三:兩點式方程限制條件多,垂直于坐標軸的直線不能用兩點式來表示。正巧,我們學校和海鹽高級中學、平湖當湖中學期中考試時是三校聯(lián)考的,到平湖當湖中學去商討期中考試的范圍時,借此機會我也拿這個問題請教了兩所學校的備課組長,一致認為直線的兩點式該弱化處理,學生容易算錯。種種理由顯示直線的兩點式方程似乎沒有“立足之地”了。在新課標下到底如何定位、把握直線的兩點式方程的教學呢?
二、課前分析
1.學情分析
在初中,學生學了一點平面幾何的知識,那時他們還僅限于圖形的處理。到了高中從《直線與方程》、《圓與方程》到選修1-1《圓錐曲線》這三章他們開始接觸解析幾何。解析幾何的本質(zhì)就是用代數(shù)方法研究圖形的幾何性質(zhì),體現(xiàn)了數(shù)形結(jié)合的重要數(shù)學思想。在《直線與方程》這一章中,以平面直角坐標系為平臺,給直線插上方程的“翅膀”,通過直線的方程研究直線之間的位置關(guān)系:平行、垂直,以及兩條直線的交點坐標,點到直線的距離公式等等。
從幾何直觀到代數(shù)表示從代數(shù)表示到幾何直觀
(建立直線的方程)(通過方程研究幾何性質(zhì)和度量)
直線的方程起了一個“橋梁”的作用。直線的方程重要性不言而喻了。
2.兩點式本身的優(yōu)點分析
直線的兩點式體現(xiàn)了“兩點確定一條直線”這一樸素的數(shù)學理念;斜率不存在時的直線方程可用兩點式的變形寫出,向直線的一般式方程完成過渡;研究兩點式方程的目的不是說這種形式比較簡單或是好用,兩點式方程起著承上啟下的作用,它保持了知識的完整性和系統(tǒng)性,在思想與方法層面上,對學生分析問題解決問題的能力的培養(yǎng)應(yīng)該有好處;兩點式方程的表達式工整,結(jié)構(gòu)優(yōu)美,如果設(shè)它等于一個參數(shù),馬上可以得到直線的參數(shù)方程,為將來選修模塊中的直線的參數(shù)方程做了鋪墊,這是其它方程所不能代替的。
如果按照點斜式的程度來上這節(jié)課的話,會不會真的“上了還不如不上”呢?帶著這個困惑我決定進行一次“詳細上這堂課”的教學嘗試。
三、上課實錄
因為上節(jié)課學過了直線方程的點斜式,所以我上課一開始給出了一道小練習:已知直線經(jīng)過兩點,求直線的方程.讓學生獨立當場完成。做完之后我統(tǒng)計了一下,用點斜式方法來求的占,還有的同學是用初中學過的待定系數(shù)設(shè)求一次函數(shù)的方法。前者用時較短,后者用時較長。看到這個結(jié)果,我基本心中有數(shù),故意不做點評我開始了新課的教學。
師:前面我們已經(jīng)探索了確定直線位置的幾何要素有哪些?
生眾:兩點確定一條直線。
師:對。還有嗎?
生:已知一個點和傾斜角。
師:很好。傾斜角和斜率都表示直線的傾斜程度,所以已知一個點和直線的斜率也可以確定一條直線。已知直線過點和它的斜率(或傾斜角)可以求出直線的方程為,我們把這個方程稱為直線的點斜式,那么已知直線過了兩個點怎么求直線的方程呢?比如開頭那個小練習,我們可以怎么做呢?
讓兩個學生起立作答。對于這兩種做法我都給予了肯定。那么已知直線上兩點求直線方程有沒有更快捷的方法呢?我們一起探討吧。
師:已知、,如何求直線的方程?
生1:先求出直線的斜率,再寫出直線的點斜式方程:。
師:能不能變形?上式的形式不便于記憶及應(yīng)用,可以把上式進行變形,使它的形式比較對稱和美觀,能夠體現(xiàn)數(shù)學之美。你認為什么形式更美觀些?
生2:。
師:這是等價變形嗎?兩邊除以時,必須。
生3:。
師:同理時才為等價變形。我們可以用方程
表示過兩點、的直線方程了。這個方程形式體現(xiàn)了“對稱美”,突出了兩點的坐標,根據(jù)直線所過的兩點的坐標可以立即寫出直線的方程,所以我們就把這個形式的方程就叫做直線的兩點式方程,簡稱兩點式。
師:注意到方程后面的兩個限制條件,兩點式方程不能表示哪些直線呢?
生:當時,直線傾斜角是90°,當時,直線的傾斜角是0°。這兩種直線不能用兩點式方程表示。
師:真聰明。那這兩種直線就沒有方程嗎?
生:有的。當,直線傾斜角是90°時,直線垂直于軸,直線上的每一點橫坐標都是,所以可用表示。同理當,直線的傾斜角是0°時,直線可用方程表示。
師:非常好。直線的兩點式方程不能表示垂直于坐標軸的直線,就如同直線的點斜式不能表示斜率不存在的直線一樣,有點殘缺美。但是有沒有辦法彌補這點小遺憾呢?把直線的兩點式方程怎么變一變就能表示平面上的任意一條直線? 生4:分式化成整式,去分母。沒有分母它就沒有限制條件了。
師:真的太棒了。對角相乘把方程化為就可以了。
書上之所以不化成這種形式,是為了講究和諧美和對稱美。以后大家在直接使用兩點式求直線方程時,可要看清楚兩個點的坐標喲,能不能用兩點式表示才是關(guān)鍵。
(后面就是例題講解和練習的鞏固,在此省略。)
通過課堂上學生熱烈的討論探究以及例題講解、課后練習的鞏固,我發(fā)現(xiàn)教學前的困惑,基本消除了。上完了《直線的一般式》之后,我觀察學生的作業(yè),再碰到已知兩點求直線的方程時,他們用的.多的還是直線方程的兩點式。不用擔心學生會算錯,要算錯的話不管什么方法都會算錯。結(jié)構(gòu)復雜也不是問題,一節(jié)課的探究下來,對結(jié)構(gòu)也是理解的比較清楚了。通過這節(jié)課的備課、教學,我發(fā)現(xiàn)教科書給了我們一個新觀念、新方法,也為數(shù)學教學提供了新思路。
四、課后反思
1、研讀課標,準確定位教學目標
新課標準提出:“高中數(shù)學應(yīng)該返璞歸真,努力揭示數(shù)學概念的發(fā)展過程和本質(zhì),使學生理解數(shù)學概念的逐步形成的過程,體會蘊含其中的思想方法;教學中要注意溝通各個部分內(nèi)容之間的聯(lián)系,通過類比、聯(lián)想、知識的遷移和應(yīng)用等方式,使學生體會知識之間的有機聯(lián)系,感受數(shù)學的整體性,進一步理解數(shù)學的本質(zhì),提高解決問題的能力。”
課程標準是教學的依據(jù),務(wù)必認真、反復地研讀,深刻領(lǐng)會、把握課程標準的精神,領(lǐng)悟新課改的理念。教學必須以課程標準為“綱”,孰輕孰重,清清楚楚,才能切實地貫徹新課改的精神和課標的理念。
通過兩點式方程的教學,使學生認識到“兩點確定一條直線”這一樸素的數(shù)學文化理念;讓學生知道直線的方程有五種形式,增強了知識的系統(tǒng)性,擴大了學生的視野。教學中讓學生分析方程的不同,以便于學生形成批判性的思維習慣;通過分析兩點式方程的結(jié)構(gòu),讓學生體會到數(shù)學的對稱美。達成以上目標只需十幾分鐘,如果放棄這么好的一個教學時機,對學生的終生發(fā)展會留有遺憾。
2、研讀教材,準確把握教學目標
教科書是解讀課程標準的范本。它凝聚著編者對課標的準確理解的心血,蘊藏著豐富的數(shù)學教育內(nèi)涵,體現(xiàn)著數(shù)學的科學性和編排的合理性、藝術(shù)性。作為一線教師只有研讀教科書,才能準確把握教學目標,悟出教科書的精髓,發(fā)揮教科書的教育作用。
在人教A版中,直線的斜截式和截距式是通過兩道例題的形式給出的,在課標中明確提到“根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系。”教材的編寫者在編寫教材時的良苦用心可見一斑。我們只有不斷對教材中的每個細節(jié)深入研究,領(lǐng)悟教材編寫者的意圖,才是真正的“用教材”,才能提高個人的教學水平,才能真正把課堂教學落到實處。
3、研究學法,提高效率、貫徹理念
對于高中生來說,多進行一些學法指導,在教學時盡可能遵循方法和知識雙重走向,讓學生體驗教科書分段設(shè)計、分層推進的策略,學會自主探究、合作交流的學習方式,為后續(xù)學習提出一個模式,學生自然而然地適應(yīng)高中數(shù)學的學習。
在這節(jié)直線的兩點式教學課中,老師著眼于“引”,啟發(fā)學生“探”,把“引”和“探”有機地結(jié)合起來,采用探究、討論的教學方式,通過問題激發(fā)學生求知欲,使學生主動參與直線的兩點式方程的探索、應(yīng)用活動。
通過這一節(jié)“直線的兩點式”的教學前的課前困惑、上課解惑、課后反思。筆者深刻地感悟到:教學就是一種過程的經(jīng)歷、一種過程的體驗、一種過程的感悟。
【直線的兩點式方程教學困惑解惑與感悟教育論文】相關(guān)文章:
直線的兩點式方程說課稿11-08
關(guān)于直線的兩點式方程教學設(shè)計06-11
直線的點斜式方程教學設(shè)計12-18
《直線的點斜式方程》教學設(shè)計10-17
兩點式方程公式10-12
兩點確定直線方程公式是什么09-08
《直線的點斜式方程》說課稿02-21
什么叫直線的對稱式方程10-08
《直線方程》教學反思05-29