小學六年級數(shù)學《成反比例的量》說課稿(精選3篇)
作為一位優(yōu)秀的人民教師,常常要寫一份優(yōu)秀的說課稿,說課稿是進行說課準備的文稿,有著至關(guān)重要的作用。那么寫說課稿需要注意哪些問題呢?下面是小編整理的小學六年級數(shù)學《成反比例的量》說課稿(精選3篇),希望能夠幫助到大家。
《成反比例的量》說課稿1
教學內(nèi)容:
人教版教材小學數(shù)學六年級下冊第三單元的第四課時《成反比例的量》
教學目標:
1、理解反比例的意義,能正夠判斷兩個量是否成反比例。
2、結(jié)合具體問題,經(jīng)歷認識成反比例的量的過程。
3、使學生在自主探索合作交流中體驗成功的愉悅,進一步樹立學習數(shù)學的自信心。
教學重點:
理解反比例的意義,能正夠判斷兩個量是否成反比例。
教學難點:
引導學生研究兩種相關(guān)聯(lián)的量的變化規(guī)律,能正夠判斷兩個量是否成反比例。
教學過程:
一、口算訓練:
0.01×50=720÷800=816-315=0.42÷6=
50×0.03=30×0.05=11+0.05=0.3×1.1=
8.9-1.2=8.2-0.7=460×10=322-85=
130×50=0×0.01=7.2-3.5=0.2×60=
288÷12=147÷30=790+104=0.12×5=
150-7.4=720÷300=1.4×0.6=
二、情境引入:
引入新課:我們已經(jīng)學習了成正比例的量,誰能說說什么是成正比例的量?用字母表示正比例關(guān)系。
讓學生舉例描述成正比例關(guān)系的兩個量。
師:我們已經(jīng)能根據(jù)成正比例的量的特征判斷兩種量是不是成正比例。那么今天我們學習成反比例的量。
課件出示情境圖:把體積相同的水倒入底面積不同的圓柱形玻璃杯中。
師:猜一猜水面的高度會不會相同?
生:不相同。
師:高度的大小與什么有關(guān)?
生:高度的大小與量杯的底面積有關(guān),底面積大水面就低,底面積小水面就高。
師:究竟是不是這樣呢?我們來驗證一下!
三、建構(gòu)模型:
1、教學例3:
師:出示量杯的底面積和高的數(shù)據(jù)。
高度(cm)302015105
底面積(平方厘米)1015203060
體積(立方厘米)
師:你能求出水的體積嗎?
生:用底面積乘高。都等于300立方厘米。
學生觀察表內(nèi)數(shù)據(jù),小組討論回答下面的問題。
(1)表中三個數(shù)量中哪個量不變?
(2)三個數(shù)量之間有什么關(guān)系?
學生匯報:水的高度隨著底面積的變化而變化。底面積增加,高度反而降低,底面積減少,高度反而升高,而且高度和底面積的乘積一定。
師引導學生總結(jié):像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
追問:如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的積,反比例關(guān)系式怎樣表示?學生自己嘗試總結(jié)匯報:x×y=k(一定)
師:看剛才的算式里x、y、k分別代表什么?
生:x代表底面積y代表高k代表體積。
2、生活中還有哪些成反比例的量?
追問:我們該如何判斷兩個量是否成反比例呢?
生回答,補充完整。
四、解釋應用:
1、判斷題中的兩個量是否成反比例,并說明理由。
思考題:鋪地面積一定時,方磚邊長與所需塊數(shù)成不成反比例?為什么?
2、做一做:運一批貨物,每天運的噸數(shù)和需要的天數(shù)如下表。根據(jù)表回答下面的問題:
(1)表中有哪兩種量?它們是不是相關(guān)聯(lián)的量?
(2)完成表格后,你有什么發(fā)現(xiàn)?
五、課堂小結(jié):
你有什么收獲?
學生匯報。
師引導學生比較正、反比例的相同點和不同點。
《成反比例的量》說課稿2
教學內(nèi)容
教科書第14~16頁的例4~例6以及相應的“做一做”,練習三的第4~7題。
教學目的
1、使學生通過具體問題認識成反比例的量,理解反比例的意義,能判斷兩種量是否成反比例關(guān)系,能找出生活中成反比例量的實例,并進行交流。
2、引導學生運用前面學習成正比例的量的學習方法學習反比例,從中感受學習方法的普遍適用性,培養(yǎng)學生的觀察能力、推理能力、歸納能力和靈活運用知識的能力。
教具、學具準備
視頻展示臺。
教學過程
一、復習引入
1、怎樣判斷兩種量是不是成正比例?
2、寫出正比例關(guān)系式。
3、判斷下面每題中的兩種量是不是成正比例,并說明理由。
(1)每本練習本的張數(shù)一定,裝訂練習本紙的總張數(shù)和裝訂的本數(shù)。
(2)每天播種的公頃數(shù)一定,播種的總公頃數(shù)與播種的天數(shù)。
(3)工作總量一定,工作效率和工作時間。
4、回想一下,我們怎樣學習成正比例的量。
引導學生歸納研究成正比例的量的學習步驟和方法是:先把兩種量的變化情況列成表,再觀察、討論表中的變化規(guī)律,歸納變化規(guī)律,并用關(guān)系式表示。學生回答時,教師隨學生的回答板書:列表──觀察──討論──歸納──用關(guān)系式表示。
二、導入新課
教師:這節(jié)課我們用同樣的學習方法來研究比例的另外一個規(guī)律。
三、進行新課
1、教學例4。
教師:同學們剛才在解答準備題時,知道“工作總量一定,工作效率和工作時間”不成正比例關(guān)系,那么,工作效率和工作時間成不成比例?如果成比例,又成什么比例呢?為了弄清這些問題,我們可以用前面掌握的學習方法,先列個表來分析。
在視頻展示臺上出示例4:華豐機械廠加工一批機器零件,每小時加工的數(shù)量和所需的加工時間如下表:
工效(個)102030405060…
時間(時)603020151210…
教師:請同學們觀察這個表,先獨立思考后再討論、交流、回答以下問題:(在視頻展示臺上展示。)
(1)表中有哪兩種量?
(2)這兩種量是怎樣變化的?
(3)還可以從表中發(fā)現(xiàn)哪些規(guī)律?
學生討論后,先抽問第1問和第2問。引導學生說出表中有工作效率和工作時間這兩種量,這兩種量的變化規(guī)律是,工作效率不斷擴大,所需的工作時間反而不斷地縮小。
教師:為什么會有這種變化規(guī)律呢?
引導學生結(jié)合生活實例,說因為工作總量一定,每小時做的工作越多,所用的時間越少。例如要種8棵樹,如果每小時種1棵,要8小時;每小時種4棵,只要2小時;如果每小時種8棵呢,只要1小時就夠了。
教師:盡管一個量在擴大,另一個量反而縮小,但是每小時加工的個數(shù)是隨所需的加工時間的變化而變化的,所以,每小時加工的個數(shù)與所需的加工時間仍然是相關(guān)聯(lián)的兩種量。你們還發(fā)現(xiàn)些什么規(guī)律嗎?
學生任意說表中的規(guī)律。如每小時加工數(shù)從10擴大到40個,擴大4倍,所需的加工時間反而從60小時縮短到15小時,縮小了4倍;每小時加工數(shù)從60個縮小到30個,縮小了2倍,所需的加工時間反而從10小時擴大到20小時,擴大了2倍。
教師:還能發(fā)現(xiàn)哪些規(guī)律呢?比如說用每豎列的兩個數(shù)相乘,看看它們的乘積是否相等,想想這個乘積表示什么?
引導學生找出每豎列的兩個數(shù)的乘積相等的規(guī)律。如:
10×60=600,20×30=600,40×15=600,…
這個600實際上就是這批零件的總數(shù)。
教師:能寫出關(guān)系式嗎?
引導學生寫出:每小時加工數(shù)×加工時間=零件總數(shù)(一定)
2、教學例5。
教師:再來研究一個問題。
在視頻展示臺上出示例5:用600張紙裝訂成同樣的練習本,每本的張數(shù)和裝訂的本數(shù)有什么關(guān)系呢?請同學們先填寫下表:
每本的張數(shù)152025304060…
裝訂的本數(shù)40…
教師:同學們先填寫好表中的數(shù)據(jù)后,再用前面的分析方法,獨立分析表中的數(shù)量關(guān)系,然后同桌進行交流。
學生分析后指導學生歸納:
(1)表中每本的張數(shù)和裝訂的本數(shù)是相關(guān)聯(lián)的兩種量,裝訂的本數(shù)隨著每本的張數(shù)的變化而變化;
(2)每本的張數(shù)擴大,裝訂的本數(shù)反而縮小;每本的張數(shù)縮小,裝訂的本數(shù)反而擴大;
(3)它們之間的關(guān)系可以寫成:每本的張數(shù)×裝訂的本數(shù)=紙的總張數(shù)(一定)。
教師:我們上面研究了兩個問題,下面我們一起來歸納這兩個問題的一些共同特點。
引導學生歸納出這兩個問題中都有兩種相關(guān)聯(lián)的量,一種量擴大,另一種量反而縮小,這兩種量中相對應的兩個數(shù)的積一定。
教師:凡是符合以上規(guī)律的兩種量,我們就把它叫做成反比例的量。(板書課題)它們之間的關(guān)系就是反比例關(guān)系。和正比例一樣,成反比例的量也可以用式子來表示。如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的乘積(一定),怎樣用式子來表示反比例的關(guān)系式呢?
引導學生歸納出:x×y=k(一定)。
教師:請同學們相互說一說生活中還有哪些是成反比例的量?
學生先相互說,然后再說給全班同學聽。
3、教學例6。
教師:請同學們用上面所學的知識判斷一下,在播種中如果播種的總公頃數(shù)一定,每天播種的.公頃數(shù)和要用的天數(shù)是不是成反比例?為什么?
學生先獨立分析,然后再交流討論,最后抽學生匯報。引導學生分析出每天播種的公頃數(shù)和要用的天數(shù)是兩種相關(guān)聯(lián)的量,它們與總公頃數(shù)有“每天播種的公頃數(shù)×天數(shù)=總公頃數(shù)”的關(guān)系,由于總公頃數(shù)一定,所以每天播種的公頃數(shù)和要用的天數(shù)成反比例。
指導學生完成第16頁“做一做”。
四、鞏固練習
指導學生完成練習三第4~7題。
五、課堂小結(jié)
教師:這節(jié)課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?
學生小結(jié)后教師再對全課知識進行歸納,學有余力的學生,可以在教師的指導下討論完成練習三的第8*題。
板書設(shè)計
成反比例的量學習的基本步驟和方法:列表──觀察──討論──歸納──用關(guān)系式表示。兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,它們的關(guān)系叫做反比例關(guān)系。
X×Y=K(一定)
例4:例5:每小時加工數(shù)×加工時間=零件
每本的張數(shù)×裝訂的本數(shù)=紙的總數(shù)(一定)總張數(shù)(一定)
《成反比例的量》說課稿3
一、教材
(一)說教材
《反比例的意義》是新課標人教版小學數(shù)學六年級下冊第42頁例3的內(nèi)容。本節(jié)課的內(nèi)容是在教學了成正比例的量的基礎(chǔ)上進行教學的,是前面“比例”知識的深化,是后面學習“用它解決一些簡單正、反比例的實際問題”的基礎(chǔ),它起著承前啟后的作用,是小學階段比例初步知識教學中的一項重要內(nèi)容。為此,教學時先復習一些基本的數(shù)量關(guān)系,使知識間發(fā)生遷移,在此基礎(chǔ)上探求新知,最后深化新知。
(二)說教學目標
以《新課程標準》為依據(jù),結(jié)合小學數(shù)學教材編排意圖,基于此,我確立以下教學目標:
知識與技能目標:使學生理解反比例關(guān)系的意義,能根據(jù)反比例的意義正確判斷兩種量是否成反比例。
能力目標:提高學生歸納、總結(jié)和概括的能力。
情感與態(tài)度目標:在教學中滲透事物之間是相互聯(lián)系和相互轉(zhuǎn)化的辨證唯物主義的觀點。
(三)說教學重、難點
本節(jié)課的教學重點:正確理解反比例的意義。
教學難點:掌握反比例的特征,能夠正確判斷反比例關(guān)系。
(四)說教學理念
在教學過程的設(shè)計上,首先通過對正比例的復習,直接導入新課教學,揭示課題(成反比例的量),例3的學習,引導學生觀察表中的三種量中的變化規(guī)律,通過學生討論交流、自主探究在教師的引導概括出反比例的意義,然后進一步抽象概括反比例關(guān)系式:xy=k(一定),接著運用反比例的知識,判斷兩種量是不是成反比例的量,然后讓學生自己舉例說說生活中的反比例,進一步加深對反比例關(guān)系的認識。
(五)說教學具準備:課件
二、說教法、學法
教學時充分相信學生、尊重學生,改變傳統(tǒng)的填壓式教學模式,把學生由被動聽轉(zhuǎn)化為主動學,放手讓他們主動去探索出新知識,最大限度地充分發(fā)揮學生的主觀主動性。從而使學生學到探究新知的方法,體驗到成功的喜悅,激起學生學習的興趣。同時采用引探法,引導學生自主探究,培養(yǎng)他們利用已有知識解決新問題的能力。
三、教學過程
(一)復習引入
1、成正比例的量有什么特征?
2、在生活中兩個相關(guān)聯(lián)的量不僅能形成正比例關(guān)系,而且還能形成另外一種特征,今天這節(jié)課我們就來學習數(shù)量關(guān)系的另一種特征,成反比例的量。
(二)探究新知
1、我們先來看一個實驗,出示課件。
高度(厘米)302015105
底面積(平方厘米)1015203060
體積(立方厘米)
提問:從中你發(fā)現(xiàn)了什么?本題與教材第39頁例1有什么不同?
(2)學生討論交流。
(3)引導學生回答:表中的兩個量是高度和底面積。
高度擴大,底面積反而縮小;高度縮小,底面積反而擴大。
每兩個相對應的數(shù)的乘積都是300.
(4)計算后你又發(fā)現(xiàn)了什么?
每兩個相對應的數(shù)的乘積都是300,乘積一定。
小結(jié):那我們就說水的高度和體積成反比例關(guān)系,水的高度和體積是成反比例的量。
教師提問:高底面積和體積,怎樣用式子表示他們的關(guān)系?(板書:高×底面積=體積)
(5)如果用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示他們的積一定,反比例關(guān)系可以用一個什么樣的式子表示?(板書:x×y=k)
小結(jié):通過上面的學習,你認為判斷兩種相關(guān)聯(lián)的量是否成反比例,關(guān)鍵是什么?
(6)、比較歸納正反比例的異同點。
課件出示成反比例的量改變規(guī)律的圖像與成正比例的量改變規(guī)律的圖像
設(shè)計意圖:比較思想是在小學數(shù)學教學中應用十分普遍的數(shù)學思想方法,比較是把事物的個別屬性加以分析,綜合而后肯定它們之間的同異,從而得出必定規(guī)律的數(shù)學思想方法。《成反比例的量》是繼《成正比例的量》一課后學習的內(nèi)容,兩節(jié)課的學習內(nèi)容和學習方法有相似之處,比較合實用比較法。在學習本課的過程中,學生對于相似的內(nèi)容,可以從知識的差別中找到同一,也可以從同一中找出差別。幫忙學生把新知識深化拓展。
(三)鞏固練習。
1、生活中,哪些相關(guān)聯(lián)的量成反比例關(guān)系,舉例說一說。
2、判斷下面每題中的兩個量是不是成反比例,并說明理由。
(1)路程一定,速度和時間。
(2)小明從家到學校,每分走的速度和所需時間。
(3)平行四邊形面積一定,底和高。
(4)小林做10道數(shù)學題,已做的題和沒有做的題。
(5)小明拿一些錢買鉛筆,單價和購買的數(shù)量。
3、完成第43頁做一做。
(四)、總結(jié):
今天我們學習了什么?(揭示課題)你有什么收獲?在計算時你要提示大家注意什么?你對今天的學習還有什么疑問嗎?
(設(shè)計意圖:培養(yǎng)學生敢于質(zhì)疑,勇于創(chuàng)新的精神)
【小學六年級數(shù)學《成反比例的量》說課稿(精選3篇)】相關(guān)文章:
成反比例的量說課11-11
《物質(zhì)的量濃度》課前說課稿12-04
成正比例的量說課稿12-07
小學數(shù)學下冊說課稿(精選5篇)05-09
人教版小學六年級數(shù)學《圓柱的認識》說課稿【精選】03-24
小學數(shù)學《約分》說課稿12-24