www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    高中數(shù)學(xué)說課稿

    時間:2021-08-09 09:45:58 說課稿 我要投稿

    有關(guān)高中數(shù)學(xué)說課稿范文合集六篇

      作為一名教職工,可能需要進行說課稿編寫工作,編寫說課稿是提高業(yè)務(wù)素質(zhì)的有效途徑。我們應(yīng)該怎么寫說課稿呢?下面是小編幫大家整理的高中數(shù)學(xué)說課稿6篇,歡迎閱讀與收藏。

    有關(guān)高中數(shù)學(xué)說課稿范文合集六篇

    高中數(shù)學(xué)說課稿 篇1

      教學(xué)目標

      A、知識目標:

      掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。

      B、能力目標:

      (1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

      (2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學(xué)生在實踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。

      (3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。

      C、情感目標:(數(shù)學(xué)文化價值)

      (1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。

      (2)通過公式的運用,樹立學(xué)生"大眾教學(xué)"的思想意識。

      (3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數(shù)學(xué)的心理體驗,產(chǎn)生熱愛數(shù)學(xué)的情感。

      教學(xué)重點:

      等差數(shù)列前n項和的公式。

      教學(xué)難點:

      等差數(shù)列前n項和的公式的靈活運用。

      教學(xué)方法

      啟發(fā)、討論、引導(dǎo)式。

      教具:

      現(xiàn)代教育多媒體技術(shù)。

      教學(xué)過程

      一、創(chuàng)設(shè)情景,導(dǎo)入新課。

      師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項公式及其有關(guān)性質(zhì),今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時,一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

      例1,計算:1+2+3+4+5+6+7+8+9+10。

      這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。

      生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

      生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。

      上面兩式相加得2S=11+10+。。。。。。+11=10×11=110

      10個

      所以我們得到S=55,

      即1+2+3+4+5+6+7+8+9+10=55

      師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。

      理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢?

      生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。

      二、教授新課(嘗試推導(dǎo))

      師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。

      生4:Sn=a1+a2+。。。。。。an—1+an也可寫成

      Sn=an+an—1+。。。。。。a2+a1

      兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

      n個

      =n(a1+an)

      所以Sn=(I)

      師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n—1)d代入公式(1)得

      Sn=na1+ d(II)

      上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。

      三、公式的應(yīng)用(通過實例演練,形成技能)。

      1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量例2、計算:

      (1)1+2+3+。。。。。。+n

      (2)1+3+5+。。。。。。+(2n—1)

      (3)2+4+6+。。。。。。+2n

      (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

      請同學(xué)們先完成(1)—(3),并請一位同學(xué)回答。

      生5:直接利用等差數(shù)列求和公式(I),得

      (1)1+2+3+。。。。。。+n=

      (2)1+3+5+。。。。。。+(2n—1)=

      (3)2+4+6+。。。。。。+2n==n(n+1)

      師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。

      生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負項分開,可看成兩個等差數(shù)列,所以

      原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

      =n2—n(n+1)=—n

      生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結(jié)合都為—1,故可得另一解法:

      原式=—1—1—。。。。。。—1=—n

      n個

      師:很好!在解題時我們應(yīng)仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。

      例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

      生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

      又∵d=—2,∴a1=6

      ∴S12=12 a1+66×(—2)=—60

      生9:(2)由a1+a2+a3=12,a1+d=4

      a8+a9+a10=75,a1+8d=25

      解得a1=1,d=3 ∴S10=10a1+=145

      師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構(gòu)造方程或方程組求另外兩個變量(知三求二),請同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。

      師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)

      ①數(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

      ②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導(dǎo)學(xué)生運用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。

      2、用整體觀點認識Sn公式。

      例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)

      師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?

      生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

      師:對!(簡單小結(jié))這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學(xué)問題的體現(xiàn)。

      師:由于時間關(guān)系,我們對等差數(shù)列前n項和公式Sn的運用一一剖析,引導(dǎo)學(xué)生觀察當(dāng)d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認識Sn公式后,這留給同學(xué)們課外繼續(xù)思考。

      最后請大家課外思考Sn公式(1)的逆命題:

      已知數(shù)列{an}的前n項和為Sn,若對于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說明理由。

      四、小結(jié)與作業(yè)。

      師:接下來請同學(xué)們一起來小結(jié)本節(jié)課所講的內(nèi)容。

      生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項和公式。

      2、用所推導(dǎo)的兩個公式解決有關(guān)例題,熟悉對Sn公式的運用。

      生12:1、運用Sn公式要注意此等差數(shù)列的項數(shù)n的值。

      2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。

      3、當(dāng)已知條件不足以求此項a1和公差d時,要認真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。

      師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時希望大家在學(xué)習(xí)中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學(xué)習(xí)。

      本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。

      數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。

      作業(yè):P49:13、14、15、17

    高中數(shù)學(xué)說課稿 篇2

      各位老師:

      今天我說課的題目是《輸入、輸出語句和賦值語句》,內(nèi)容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標分析、教學(xué)方法與手段分析、教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計:

      一、教材分析

      1.教材所處的地位和作用

      我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設(shè)計語言翻譯成計算機程序。程序設(shè)計語言有很多種。為了實現(xiàn)算法中的三種基本的邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),各種程序設(shè)計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.。而我們今天所要學(xué)習(xí)的是前三種算法語句,它們基本上是對應(yīng)于算法中的順序結(jié)構(gòu)的。

      2.教學(xué)的重點和難點

      重點:正確理解輸入語句、輸出語句、賦值語句的作用。

      難點:準確寫出輸入語句、輸出語句、賦值語句。

      二、教學(xué)目標分析

      1.知識與技能目標:

      (1)正確理解輸入語句、輸出語句、賦值語句的結(jié)構(gòu)。

      (2)會寫一些簡單的程序。

      (3)掌握賦值語句中的“=”的作用。

      2.過程與方法目標:

      (1)讓學(xué)生充分地感知、體驗應(yīng)用計算機解決數(shù)學(xué)問題的方法;并能初步操作、模仿。

      (2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學(xué)生應(yīng)用數(shù)學(xué)軟件的能力.

      3.情感,態(tài)度和價值觀目標

      (1) 通過對三種語句的了解和實現(xiàn),發(fā)展有條理的思考,表達的能力,提高邏輯思維能力.

      (2) 學(xué)習(xí)算法語句,幫助學(xué)生利用計算機軟件實現(xiàn)算法,活躍思維,提高學(xué)生的數(shù)學(xué)素養(yǎng).

      (3) 結(jié)合計算機軟件的.應(yīng)用, 增強應(yīng)用數(shù)學(xué)的意識,在計算機上實現(xiàn)算法讓學(xué)生體會成功喜悅.

      三、教學(xué)方法與手段分析

      1.教學(xué)方法:引導(dǎo)與合作交流相結(jié)合,學(xué)生在體會三種語句結(jié)構(gòu)格式的過程中,讓學(xué)生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結(jié)三種算法語句的思想與特征.

      2.教學(xué)手段:運用計算機、圖形計算器輔助教學(xué)

      四、教學(xué)過程分析

      1. 創(chuàng)設(shè)情境(約5分鐘)

      在課的開始,我要求學(xué)生們舉出一些在日常生活中所應(yīng)用到的有關(guān)計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數(shù)據(jù)等等,并告訴他們在現(xiàn)代社會里,計算機已經(jīng)成為人們?nèi)粘I詈凸ぷ鞑豢扇鄙俚墓ぞ撸缓蠼又鴨査麄冎恢烙嬎銠C到底是怎樣工作的?通過這個問題引出我們今天所要學(xué)習(xí)的內(nèi)容。(板出課題)

      在這個過程中,我讓學(xué)生們將課本學(xué)習(xí)的內(nèi)容與現(xiàn)實生活聯(lián)系在了一起,這樣能夠激起他們對接下來的所要學(xué)習(xí)內(nèi)容的興趣,為整節(jié)課的學(xué)習(xí)打下一個良好的基礎(chǔ)。

      2.探究新知(約15分鐘)

      這里我先給出一個題目:用描點法作出函數(shù)

      的圖象,用描點法作函數(shù)的圖象時,需要先求出自變量與函數(shù)的對應(yīng)值。編寫程序,分別計算當(dāng)

      時的函數(shù)值。(程序由我在課前準備好,教學(xué)中直接調(diào)用運行)

      程序:INPUT“x=”;x 輸入語句

      y=x^3+3*x^2-24*x+30 賦值語句

      PRINT x 輸出語句

      PRINT y 輸出語句

      END

      (學(xué)生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發(fā)現(xiàn)問題所在,進一步提高學(xué)生的模仿能力)

      之后,我向?qū)W生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學(xué)們互相交流、議論、猜想、概括出結(jié)論。提示:“input”和“print”的中文意思,還要請學(xué)生們注意到在賦值語句中的賦值號“=”與數(shù)學(xué)中的等號意義不同。)

      此過程由老師引導(dǎo),學(xué)生們自己討論并總結(jié)出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學(xué)習(xí)的效果更佳,同時也鍛煉了學(xué)生們思考問題的能力和概括能力,激發(fā)學(xué)習(xí)興趣。

      然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內(nèi)容怎樣用輸入語句、輸出語句來表達?(學(xué)生討論、交流想法,然后請學(xué)生作答)這樣可以及時應(yīng)用剛剛學(xué)習(xí)的內(nèi)容,并可以將前后所學(xué)知識聯(lián)系起來。

      3.例題精析(約12分鐘)

      在本環(huán)節(jié)中我為學(xué)生們準備了三道例題,這三道例題均選自課本的例2、例3和例4,學(xué)生通過這幾道例題的講解,結(jié)合計算機程序上機運用,可以掌握在程序設(shè)計語言中的前三種算法語句,體會到他們在程序中的意義和作用。

      4.課堂精練(約4分鐘)

      P15 練習(xí) 1.

      提問:如果要求輸入一個攝氏溫度,輸出其相應(yīng)的華氏溫度,又該如何設(shè)計程序?(學(xué)生課后思考,討論完成)通過提問啟發(fā)學(xué)生們思考,發(fā)散思維。

      5.課堂小結(jié)(約5分鐘)

      ⑴輸入語句、輸出語句和賦值語句的結(jié)構(gòu)特點及聯(lián)系

      ⑵應(yīng)用輸入語句,輸出語句,賦值語句編寫一些簡單的程序解決數(shù)學(xué)問題

      ⑶ 賦值語句中“=”的作用及應(yīng)用

      ⑷編程一般的步驟:先寫出算法,再進行編程。

      6.布置作業(yè)

      P23 習(xí)題1.2 A組 1(2)、2

      [設(shè)計意圖]課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。

      7.板書設(shè)計

    高中數(shù)學(xué)說課稿 篇3

      一、教材分析

      集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

      本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關(guān)系。

      二、教學(xué)目標

      1、學(xué)習(xí)目標

      (1)通過實例,了解集合的含義,體會元素與集合之間的關(guān)系以及理解“屬

      于”關(guān)系;

      (2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;

      2、能力目標

      (1)能夠把一句話一個事件用集合的方式表示出來。

      (2)準確理解集合與及集合內(nèi)的元素之間的關(guān)系。

      3、情感目標

      通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學(xué)敏感性,了 解到數(shù)學(xué)于生活中。

      三、教學(xué)重點與難點

      重點 集合的基本概念與表示方法;

      難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;

      四、教學(xué)方法

      (1)本課將采用探究式教學(xué),讓學(xué)生主動去探索,激發(fā)學(xué)生的學(xué)習(xí)興趣。并分層教學(xué),這樣可顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果;

      (2)學(xué)生在老師的引導(dǎo)下,通過閱讀教材,自主學(xué)習(xí)、思考、交流、討論和概括,從而完成本節(jié)課的教學(xué)目標。

      五、學(xué)習(xí)方法

      (1)主動學(xué)習(xí)法:舉出例子,提出問題,讓學(xué)生在獲得感性認識的同時,

      教師層層深入,啟發(fā)學(xué)生積極思維,主動探索知識,培養(yǎng)學(xué)生思維想象 的綜合能力。

      (2)反饋補救法:在練習(xí)中,注意觀察學(xué)生對學(xué)習(xí)的反饋情況,以實現(xiàn)“培

      優(yōu)扶差,滿足不同。”

      六、教學(xué)思路

      具體的思路如下

      復(fù)習(xí)的引入:講一些集合的相關(guān)數(shù)學(xué)及相關(guān)數(shù)學(xué)家的經(jīng)歷故事!這可以讓學(xué)生更加了解數(shù)學(xué)史從何使學(xué)生對數(shù)學(xué)更加感興趣,有助于上課的效率!因為時間關(guān)系這里我就不說相關(guān)數(shù)學(xué)史咯。

      一、 引入課題

      軍訓(xùn)前學(xué)校通知:8月15日8點,高一年段在體育館集合進行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?

      在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合,即是一些研究對象的總體。

      二、 正體部分

      學(xué)生閱讀教材,并思考下列問題:

      (1)集合有那些概念?

      (2)集合有那些符號?

      (3)集合中元素的特性是什么?

      (4)如何給集合分類?

      (一)集合的有關(guān)概念

      (1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,

      都可以稱作對象.

      (2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由

      這些對象的全體構(gòu)成的集合.

      (3)元素:集合中每個對象叫做這個集合的元素.

      集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??

      1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構(gòu)成集合的例子,

      對學(xué)生的例子予以討論、點評,進而講解下面的問題。

      2、元素與集合的關(guān)系

      (1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A

      (2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A

      要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)

      集合A={3,4,6,9}a=2 因此我們知道a?A

      3、集合中元素的特性

      (1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.

      (2)互異性:集合中的元素一定是不同的.

      (3)無序性:集合中的元素沒有固定的順序.

      4、集合分類

      根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:

      (1)把不含任何元素的集合叫做空集Ф

      (2)含有有限個元素的集合叫做有限集

      (3)含有無窮個元素的集合叫做無限集

      注:應(yīng)區(qū)分?,{?},{0},0等符號的含義

      5、常用數(shù)集及其表示方法

      (1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合.記作N

      (2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集.記作N*或N+

      (3)整數(shù)集:全體整數(shù)的集合.記作Z

      (4)有理數(shù)集:全體有理數(shù)的集合.記作Q

      (5)實數(shù)集:全體實數(shù)的集合.記作R

      注:(1)自然數(shù)集包括數(shù)0.

      (2)非負整數(shù)集內(nèi)排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內(nèi)排

      除0的集,也這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*

      (二)集合的表示方法

      我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。

      (1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內(nèi)。

      如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

      例1.(課本例1)

      思考2,引入描述法

      說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。

      (2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內(nèi)。 具體方法:在大括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

      如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

      例2.(課本例2)

      說明:(課本P5最后一段)

      思考3:(課本P6思考) 強調(diào):描述法表示集合應(yīng)注意集合的代表元素

      {(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。

      辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。

      說明:列舉法與描述法各有優(yōu)點,應(yīng)該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。

      (三)課堂練習(xí)(課本P6練習(xí))

      三、 歸納小結(jié)與作業(yè)

      本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結(jié)合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。

      書面作業(yè):習(xí)題1.1,第1- 4題

    高中數(shù)學(xué)說課稿 篇4

      一、教材分析

      1、教材所處的地位和作用

      奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

      奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

      2、學(xué)情分析

      從學(xué)生的認知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。

      從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

      3、教學(xué)目標

      基于以上對教材和學(xué)生的分析,以及新課標理念,我設(shè)計了這樣的教學(xué)目標:

      【知識與技能】

      1、能判斷一些簡單函數(shù)的奇偶性。

      2、能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

      【過程與方法】

      經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

      【情感、態(tài)度與價值觀】

      通過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。

      從課堂反應(yīng)看,基本上達到了預(yù)期效果。

      4、教學(xué)重點和難點

      重點:函數(shù)奇偶性的概念和幾何意義。

      幾年的教學(xué)實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學(xué)生容易出現(xiàn)下面的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。

      難點:奇偶性概念的數(shù)學(xué)化提煉過程。

      由于,學(xué)生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計為本節(jié)課的難點。

      二、教法與學(xué)法分析

      1、教法

      根據(jù)本節(jié)教材內(nèi)容和編排特點,為了更有效地突出重點,突破難點,按照學(xué)生的認知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達到了預(yù)期效果。

      2、學(xué)法

      讓學(xué)生在觀察一歸納一檢驗一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學(xué)生掌握知識。

      三、教學(xué)過程

      具體的教學(xué)過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對這六個環(huán)節(jié)進行說明。

      (一)設(shè)疑導(dǎo)入、觀圖激趣

      由于本節(jié)內(nèi)容相對獨立,專題性較強,所以我采用了開門見山導(dǎo)入方式,直接點明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達到開始就明確目標突出重點的效果。

      用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個特殊函數(shù)圖象。通過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。

      (二)指導(dǎo)觀察、形成概念

      在這一環(huán)節(jié)中共設(shè)計了2個探究活動。

      探究1 、2 數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是通過學(xué)生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點)對稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內(nèi)任意一個 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。

      在這個過程中,學(xué)生把對圖形規(guī)律的感性認識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。

      (三) 學(xué)生探索、領(lǐng)會定義

      探究3 下列函數(shù)圖象具有奇偶性嗎?

      設(shè)計意圖:深化對奇偶性概念的理解。強調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點對稱。(突破了本節(jié)課的難點)

      (四)知識應(yīng)用,鞏固提高

      在這一環(huán)節(jié)我設(shè)計了4道題

      例1判斷下列函數(shù)的奇偶性

      選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下面完成。

      例1設(shè)計意圖是歸納出判斷奇偶性的步驟:

      (1) 先求定義域,看是否關(guān)于原點對稱;

      (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

      例2 判斷下列函數(shù)的奇偶性:

      例3 判斷下列函數(shù)的奇偶性:

      例2、3設(shè)計意圖是探究一個函數(shù)奇偶性的可能情況有幾種類型?

      例4(1)判斷函數(shù)的奇偶性。

      (2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

      例4設(shè)計意圖加強函數(shù)奇偶性的幾何意義的應(yīng)用。

      在這個過程中,我重點關(guān)注了學(xué)生的推理過程的表述。通過這些問題的解決,學(xué)生對函數(shù)的奇偶性認識、理解和應(yīng)用都能提升很大一個高度,達到當(dāng)堂消化吸收的效果。

      (五)總結(jié)反饋

      在以上課堂實錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。

      在本節(jié)課的最后對知識點進行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗的積累。所以提高知識的應(yīng)用能力、增強錯誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。

      (六)分層作業(yè),學(xué)以致用

      必做題:課本第36頁練習(xí)第1-2題。

      選做題:課本第39頁習(xí)題1、3A組第6題。

      思考題:課本第39頁習(xí)題1、3B組第3題。

      設(shè)計意圖:面向全體學(xué)生,注重個人差異,加強作業(yè)的針對性,對學(xué)生進行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進一步達到不同的人在數(shù)學(xué)上得到不同的發(fā)展。

    高中數(shù)學(xué)說課稿 篇5

      一、教材分析:

      1、教材的地位與作用:

      線性規(guī)劃是運籌學(xué)的一個重要分支,在實際生活中有著廣泛的應(yīng)用。本節(jié)內(nèi)容是在學(xué)習(xí)了不等式、直線方程的基礎(chǔ)上,利用不等式和直線方程的有關(guān)知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學(xué)習(xí),使學(xué)生進一步了解數(shù)學(xué)在解決實際問題中的應(yīng)用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣、應(yīng)用數(shù)學(xué)的意識和解決實際問題的能力。

      2、教學(xué)重點與難點:

      重點:畫可行域;在可行域內(nèi),用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。

      難點:在可行域內(nèi),用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。

      二、目標分析:

      在新課標讓學(xué)生經(jīng)歷“學(xué)數(shù)學(xué)、做數(shù)學(xué)、用數(shù)學(xué)”的理念指導(dǎo)下,本節(jié)課的教學(xué)目標分設(shè)為知識目標、能力目標和情感目標。

      知識目標:

      1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標函數(shù)、可行解、可行

      域和最優(yōu)解等概念;

      2、理解線性規(guī)劃問題的圖解法;

      3、會利用圖解法求線性目標函數(shù)的最優(yōu)解.

      能力目標:

      1、在應(yīng)用圖解法解題的過程中培養(yǎng)學(xué)生的觀察能力、理解能力。

      2、在變式訓(xùn)練的過程中,培養(yǎng)學(xué)生的分析能力、探索能力。

      3、在對具體事例的感性認識上升到對線性規(guī)劃的理性認識過程中,培養(yǎng)學(xué)生運用數(shù)形結(jié)合思想解題的能力和化歸能力。

      情感目標:

      1、讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活,體驗數(shù)學(xué)在建設(shè)節(jié)約型社會中的作用,品嘗學(xué)習(xí)數(shù)學(xué)的樂趣。

      2、讓學(xué)生體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造,培養(yǎng)學(xué)生勤于思考、勇于探索的精神;

      3、讓學(xué)生學(xué)會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關(guān)系,滲透辯證唯物主義認識論的思想。

    高中數(shù)學(xué)說課稿 篇6

      一、說教材:

      1、教材的地位與作用

      導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學(xué)生對導(dǎo)數(shù)的概念已經(jīng)有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學(xué)生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學(xué)生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念. 通過本節(jié)的學(xué)習(xí),可以幫助學(xué)生更好的體會導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。

      2、教學(xué)的重點、難點、關(guān)鍵

      教學(xué)重點:導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。

      教學(xué)難點:理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵

      1) 從割線到切線的過程中采用的逼近方法;

      2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導(dǎo)數(shù)是曲線上某點切線的斜率,等等.

      二、說教學(xué)目標:

      根據(jù)新課程標準的要求、學(xué)生的認知水平,確定教學(xué)目標如下:

      1、知識與技能 :

      通過實驗探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。

      過程與方法:

      經(jīng)歷切線定義的形成過程,培養(yǎng)學(xué)生分析、抽象、概括等思維能力;體會導(dǎo)數(shù)的思想及內(nèi)涵,完善對切線的認識和理解

      通過逼近、數(shù)形結(jié)合思想的具體運用,使學(xué)生達到思維方式的遷移,了解科學(xué)的思維方法。

      3、情感態(tài)度與價值觀:

      滲透逼近、數(shù)形結(jié)合、以直代曲等數(shù)學(xué)思想,激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生領(lǐng)悟特殊與一般、有限與無限,量變與質(zhì)變的辯證關(guān)系,感受數(shù)學(xué)的統(tǒng)一美,意識到數(shù)學(xué)的應(yīng)用價值

      三、說教法與學(xué)法

      對于直線來說它的導(dǎo)數(shù)就是它的斜率,學(xué)生會很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過了圓錐曲線,學(xué)生對曲線的切線的概念也有了一些認識,基于以上學(xué)情分析,我確定下列教法:

      教法:從圓的切線的定義引入本課,再引導(dǎo)學(xué)生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導(dǎo)數(shù)的幾何意義和直觀感知“逼近”的數(shù)學(xué)思想.因此,我采用實驗觀察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結(jié)合,以突出重點和突破難點;

      學(xué)法:為了發(fā)揮學(xué)生的主觀能動性,提高學(xué)生的綜合能力,本節(jié)課采取了

      自主 、合作、探究的學(xué)習(xí)方法。

      教具: 幾何畫板、幻燈片

      四、說教學(xué)程序

      1.創(chuàng)設(shè)情境

      學(xué)生活動——問題系列

      問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?

      問題2 如圖直線l是曲線C的切線嗎?

      (1)與 (2)與 還有直線與雙曲線的位置關(guān)系

      問題3 那么對于一般的曲線,切線該如何定義呢?

      【設(shè)計意圖】:通過類比構(gòu)建認知沖突。

      學(xué)生活動——復(fù)習(xí)回顧

      導(dǎo)數(shù)的定義

      【設(shè)計意圖】:從理論和知識基礎(chǔ)兩方面為本節(jié)課作鋪墊。

      2.探索求知

      學(xué)生活動——試驗探究

      問一;求導(dǎo)數(shù)的步驟是怎樣的?

      第一步:求平均變化率;第二步:當(dāng)趨近于0時,平均變化率無限趨近于的常數(shù)就是。

      【設(shè)計意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準備。

      問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。

      【設(shè)計意圖】:通過學(xué)生動手實踐得到平均變化率表示割線PQ的斜率。

      問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。

      【設(shè)計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。

      探究一:學(xué)生通過幾何畫板的演示觀察割線的變化趨勢,教師引導(dǎo)給出一般曲線的切線定義。

      【設(shè)計意圖】: 借助多媒體教學(xué)手段引導(dǎo)學(xué)生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點;學(xué)生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學(xué)生對導(dǎo)數(shù)概念的理解。

      問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?

      【設(shè)計意圖】:引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:,割線PQ切線PT,所以割線

      PQ的斜率切線PT的斜率。因此,=切線PT的斜率。

      五、教學(xué)評價

      1、通過學(xué)生參加活動是否積極主動,能否與他人合作探索,對學(xué)生的學(xué)習(xí)過程評價;

      2、通過學(xué)生對方法的選擇,對學(xué)生的學(xué)習(xí)能力評價;

      3、通過練習(xí)、課后作業(yè),對學(xué)生的學(xué)習(xí)效果評價.

      4、教學(xué)中,學(xué)生以研究者的身份學(xué)習(xí),在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;

      5、本節(jié)課設(shè)計目標力求使學(xué)生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.

    【有關(guān)高中數(shù)學(xué)說課稿范文合集六篇】相關(guān)文章:

    高中數(shù)學(xué)說課稿(精選10篇)11-02

    人教版高中數(shù)學(xué)必修一說課稿 函數(shù)的概念說課稿11-02

    有關(guān)《滕王閣序》說課稿范文12-19

    有關(guān)《觀滄海》說課稿04-08

    《冰花》說課稿范文01-15

    《離騷》說課稿范文12-09

    人教版高中數(shù)學(xué)A版必修二 傾斜角與斜率說課稿11-02

    人教版高中數(shù)學(xué)必修2 直線的點斜式方程說課稿11-02

    人教A版高中數(shù)學(xué)必修3 程序框圖說課稿11-02

    體育說課稿大全體育說課稿范文11-11

    中国少妇精品久久久久无码AV| 久久久久久久久经典精品欧美激情| 无套内射无码| 亚洲精品沙发午睡系列| 铜铜铜铜铜铜铜铜好大好深色水好多| 在线观看中文字幕精品| 麻豆精品国产免费观看| 三年片在线观看免费观看大全中国| 国产精品99久久电影| 日本做受高潮好舒服视频|