www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

    時(shí)間:2024-10-17 21:59:34 知識(shí)點(diǎn)總結(jié) 我要投稿

    新人教版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(完整版)

      總結(jié)是對(duì)某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗(yàn)或情況進(jìn)行分析研究的書面材料,它可以促使我們思考,為此要我們寫一份總結(jié)。你所見過的總結(jié)應(yīng)該是什么樣的?以下是小編精心整理的新人教版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(完整版),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

    新人教版初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(完整版)

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 1

      誘導(dǎo)公式的本質(zhì)

      所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。

      常用的誘導(dǎo)公式

      公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

      sin(2k)=sin kz

      cos(2k)=cos kz

      tan(2k)=tan kz

      cot(2k)=cot kz

      公式二: 設(shè)為任意角,的三角函數(shù)值與的`三角函數(shù)值之間的關(guān)系:

      sin()=-sin

      cos()=-cos

      tan()=tan

      cot()=cot

      公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:

      sin(-)=-sin

      cos(-)=cos

      tan(-)=-tan

      cot(-)=-cot

      公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

      sin()=sin

      cos()=-cos

      tan()=-tan

      cot()=-cot

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 2

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):中位線

      知識(shí)要點(diǎn):梯形的中位線平行于兩底,并且等于兩底和的一半。

      1.中位線概念

      (1)三角形中位線定義:連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線。

      (2)梯形中位線定義:連結(jié)梯形兩腰中點(diǎn)的線段叫做梯形的中位線。

      注意:

      (1)要把三角形的中位線與三角形的中線區(qū)分開。三角形中線是連結(jié)一頂點(diǎn)和它對(duì)邊的中點(diǎn),而三角形中位線是連結(jié)三角形兩邊中點(diǎn)的線段。

      (2)梯形的中位線是連結(jié)兩腰中點(diǎn)的線段而不是連結(jié)兩底中點(diǎn)的線段。

      (3)兩個(gè)中位線定義間的聯(lián)系:可以把三角形看成是上底為零時(shí)的梯形,這時(shí)梯形的中位線就變成三角形的中位線。

      2.中位線定理

      (1)三角形中位線定理:三角形的中位線平行于第三邊并且等于它的一半.

      三角形兩邊中點(diǎn)的連線(中位線)平行于第BC邊,且等于第三邊的一半。

      知識(shí)要領(lǐng)總結(jié):三角形的中位線所構(gòu)成的小三角形(中點(diǎn)三角形)面積是原三角形面積的四分之一。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié):平面直角坐標(biāo)系

      下面是對(duì)平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。

      平面直角坐標(biāo)系

      平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系。

      水平的數(shù)軸稱為x軸或橫軸,豎直的`數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

      平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點(diǎn)重合

      三個(gè)規(guī)定:

      ①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

      ②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實(shí)際有時(shí)也可不同,但同一數(shù)軸上必須相同。

      ③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

      相信上面對(duì)平面直角坐標(biāo)系知識(shí)的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

      初中數(shù)學(xué)知識(shí)點(diǎn):平面直角坐標(biāo)系的構(gòu)成

      對(duì)于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。

      平面直角坐標(biāo)系的構(gòu)成

      在同一個(gè)平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。

      通過上面對(duì)平面直角坐標(biāo)系的構(gòu)成知識(shí)的講解學(xué)習(xí),希望同學(xué)們對(duì)上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。

      初中數(shù)學(xué)知識(shí)點(diǎn):點(diǎn)的坐標(biāo)的性質(zhì)

      下面是對(duì)數(shù)學(xué)中點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)學(xué)習(xí),同學(xué)們認(rèn)真看看哦。

      點(diǎn)的坐標(biāo)的性質(zhì)

      建立了平面直角坐標(biāo)系后,對(duì)于坐標(biāo)系平面內(nèi)的任何一點(diǎn),我們可以確定它的坐標(biāo)。反過來,對(duì)于任何一個(gè)坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個(gè)點(diǎn)。

      對(duì)于平面內(nèi)任意一點(diǎn)C,過點(diǎn)C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對(duì)應(yīng)點(diǎn)a,b分別叫做點(diǎn)C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(duì)(a,b)叫做點(diǎn)C的坐標(biāo)。

      一個(gè)點(diǎn)在不同的象限或坐標(biāo)軸上,點(diǎn)的坐標(biāo)不一樣。

      希望上面對(duì)點(diǎn)的坐標(biāo)的性質(zhì)知識(shí)講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會(huì)在考試中取得優(yōu)異成績的。

      初中數(shù)學(xué)知識(shí)點(diǎn):因式分解的一般步驟

      關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識(shí)講解。

      因式分解的一般步驟

      如果多項(xiàng)式有公因式就先提公因式,沒有公因式的多項(xiàng)式就考慮運(yùn)用公式法;若是四項(xiàng)或四項(xiàng)以上的多項(xiàng)式,

      通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

      注意:因式分解一定要分解到每一個(gè)因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個(gè)范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個(gè)整式的積的形式。

      相信上面對(duì)因式分解的一般步驟知識(shí)的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會(huì)考出好成績。

      初中數(shù)學(xué)知識(shí)點(diǎn):因式分解

      下面是對(duì)數(shù)學(xué)中因式分解內(nèi)容的知識(shí)講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。

      因式分解

      因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

      因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

      因式分解與整式乘法的關(guān)系:m(a+b+c)

      公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

      公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

      提取公因式步驟:

      ①確定公因式。②確定商式③公因式與商式寫成積的形式。

      分解因式注意;

      ①不準(zhǔn)丟字母

      ②不準(zhǔn)丟常數(shù)項(xiàng)注意查項(xiàng)數(shù)

      ③雙重括號(hào)化成單括號(hào)

      ④結(jié)果按數(shù)單字母單項(xiàng)式多項(xiàng)式順序排列

      ⑤相同因式寫成冪的形式

      ⑥首項(xiàng)負(fù)號(hào)放括號(hào)外

      ⑦括號(hào)內(nèi)同類項(xiàng)合并。

      通過上面對(duì)因式分解內(nèi)容知識(shí)的講解學(xué)習(xí),相信同學(xué)們已經(jīng)能很好的掌握了吧,希望上面的內(nèi)容給同學(xué)們的學(xué)習(xí)很好的幫助。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 3

      1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

      2、菱形的性質(zhì):⑴矩形具有平行四邊形的一切性質(zhì);

      ⑵菱形的四條邊都相等;

      ⑶菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。

      ⑷菱形是軸對(duì)稱圖形。

      提示:利用菱形的性質(zhì)可證得線段相等、角相等,它的對(duì)角線互相垂直且把菱形分成四個(gè)全等的直角三角形,由此又可與勾股定理聯(lián)系,可得對(duì)角線與邊之間的關(guān)系,即邊長的平方等于對(duì)角線一半的平方和。

      3、因式分解定義:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式的變形叫把這個(gè)多項(xiàng)式因式分解。

      4、因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④因式分解與整式乘法的關(guān)系:m(a+b+c)

      5、公因式:一個(gè)多項(xiàng)式每項(xiàng)都含有的公共的因式,叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式。

      6、公因式確定方法:①系數(shù)是整數(shù)時(shí)取各項(xiàng)最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個(gè)多項(xiàng)式各項(xiàng)的公因式。

      7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

      8、平方根表示法:一個(gè)非負(fù)數(shù)a的平方根記作,讀作正負(fù)根號(hào)a。a叫被開方數(shù)。

      9、中被開方數(shù)的取值范圍:被開方數(shù)a≥0

      10、平方根性質(zhì):①一個(gè)正數(shù)的平方根有兩個(gè),它們互為相反數(shù)。②0的平方根是它本身0。③負(fù)數(shù)沒有平方根開平方;求一個(gè)數(shù)的平方根的運(yùn)算,叫做開平方。

      11、平方根與算術(shù)平方根區(qū)別:定義不同、表示方法不同、個(gè)數(shù)不同、取值范圍不同。

      12、聯(lián)系:二者之間存在著從屬關(guān)系;存在條件相同;0的算術(shù)平方根與平方根都是0

      13、含根號(hào)式子的意義:表示a的.平方根,表示a的算術(shù)平方根,表示a的負(fù)的平方根。

      14、求正數(shù)a的算術(shù)平方根的方法;

      完全平方數(shù)類型:①想誰的平方是數(shù)a。②所以a的平方根是多少。③用式子表示。

      求正數(shù)a的算術(shù)平方根,只需找出平方后等于a的正數(shù)。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 4

      一、函數(shù)及其相關(guān)概念

      1、變量與常量

      在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。

      一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。

      2、函數(shù)解析式

      用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。

      使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。

      3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)

      (1)解析法

      兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。

      (2)列表法

      把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。

      (3)圖像法

      用圖像表示函數(shù)關(guān)系的方法叫做圖像法。

      4、由函數(shù)解析式畫其圖像的一般步驟

      (1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值

      (2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)

      (3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。

      二、相交線與平行線

      1、知識(shí)網(wǎng)絡(luò)結(jié)構(gòu)

      2、知識(shí)要點(diǎn)

      (1)在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。

      (2)在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個(gè)公共點(diǎn),稱這兩條直線相交;如果兩條直線沒有公共點(diǎn),稱這兩條直線平行。

      (3)兩條直線相交所構(gòu)成的四個(gè)角中,有公共頂點(diǎn)且有一條公共邊的兩個(gè)角是

      鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,

      與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。

      3、兩條直線相交所構(gòu)成的四個(gè)角中,一個(gè)角的兩邊分別是另一個(gè)角的兩邊的反向延長線,這樣的兩個(gè)角互為對(duì)頂角。對(duì)頂角的性質(zhì):對(duì)頂角相等。如圖1所示,與互為對(duì)頂角。=; =。

      4、兩條直線相交所成的角中,如果有一個(gè)是直角或90°時(shí),稱這兩條直線互相垂直,

      其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時(shí),⊥。

      垂線的性質(zhì):

      性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

      性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

      性質(zhì)3:如圖2所示,當(dāng)a⊥b時(shí),====90°。

      點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度叫點(diǎn)到直線的距離。

      5、同位角、內(nèi)錯(cuò)角、同旁內(nèi)角基本特征:

      在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣的兩個(gè)角叫同位角。圖3中,共有對(duì)同位角:與是同位角;與是同位角;與是同位角;與是同位角。

      在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個(gè)角叫內(nèi)錯(cuò)角。圖3中,共有對(duì)內(nèi)錯(cuò)角:與是內(nèi)錯(cuò)角;與是內(nèi)錯(cuò)角。

      在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個(gè)角叫同旁內(nèi)角。圖3中,共有對(duì)同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。

      三、實(shí)數(shù)

      1、實(shí)數(shù)的分類

      (1)按定義分類:

      (2)按性質(zhì)符號(hào)分類:

      注:0既不是正數(shù)也不是負(fù)數(shù).

      2、實(shí)數(shù)的相關(guān)概念

      (1)相反數(shù)

      ①代數(shù)意義:只有符號(hào)不同的兩個(gè)數(shù),我們說其中一個(gè)是另一個(gè)的相反數(shù).0的相反數(shù)是0.

      ②幾何意義:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個(gè)點(diǎn)表示的兩個(gè)數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱.

      ③互為相反數(shù)的兩個(gè)數(shù)之和等于0.a、b互為相反數(shù)a+b=0.

      (2)絕對(duì)值|a|≥0.

      (3)倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個(gè)數(shù)互為倒數(shù).a、b互為倒數(shù).

      (4)平方根

      ①如果一個(gè)數(shù)的平方等于a,這個(gè)數(shù)就叫做a的平方根.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù);0有一個(gè)平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a≥0)的`平方根記作.

      ②一個(gè)正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.

      (5)立方根

      如果x3=a,那么x叫做a的立方根.一個(gè)正數(shù)有一個(gè)正的立方根;一個(gè)負(fù)數(shù)有一個(gè)負(fù)的立方根;零的立方根是零.

      3、實(shí)數(shù)與數(shù)軸

      數(shù)軸定義:規(guī)定了原點(diǎn),正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.

      4、實(shí)數(shù)大小的比較

      (1)對(duì)于數(shù)軸上的任意兩個(gè)點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.

      (2)正數(shù)都大于0,負(fù)數(shù)都小于0,兩個(gè)正數(shù),絕對(duì)值較大的那個(gè)正數(shù)大;兩個(gè)負(fù)數(shù);絕對(duì)值大的反而小.

      (3)無理數(shù)的比較大小:

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 5

      1、一元二次方程解法:

      (1)配方法:(X±a)2=b(b≥0)注:二次項(xiàng)系數(shù)必須化為1

      (2)公式法:aX2+bX+C=0(a≠0)確定a,b,c的值,計(jì)算b2-4ac≥0

      若b2-4ac>0則有兩個(gè)不相等的.實(shí)根,若b2-4ac=0則有兩個(gè)相等的實(shí)根,若b2-4ac<0則無解

      若b2-4ac≥0則用公式X=-b±√b2-4ac/2a注:必須化為一般形式

      (3)分解因式法

      ①提公因式法:ma+mb=0→m(a+b)=0

      平方差公式:a2-b2=0→(a+b)(a-b)=0

      ②運(yùn)用公式法:

      完全平方公式:a2±2ab+b2=0→(a±b)2=0

      ③十字相乘法

      2、銳角三角函數(shù)定義

      銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

      正弦(sin):對(duì)邊比斜邊,即sinA=a/c;

      余弦(cos):鄰邊比斜邊,即cosA=b/c;

      正切(tan):對(duì)邊比鄰邊,即tanA=a/b;

      余切(cot):鄰邊比對(duì)邊,即cotA=b/a;

      3、積的關(guān)系

      sinα=tanα·cosα

      cosα=cotα·sinα

      tanα=sinα·secα

      cotα=cosα·cscα

      secα=tanα·cscα

      cscα=secα·cotα

      4、倒數(shù)關(guān)系

      tanα·cotα=1

      sinα·cscα=1

      cosα·secα=1

      5、兩角和差公式

      sin(A+B) = sinAcosB+cosAsinB

      sin(A-B) = sinAcosB-cosAsinB

      cos(A+B) = cosAcosB-sinAsinB

      cos(A-B) = cosAcosB+sinAsinB

      tan(A+B) = (tanA+tanB)/(1-tanAtanB)

      tan(A-B) = (tanA-tanB)/(1+tanAtanB)

      cot(A+B) = (cotAcotB-1)/(cotB+cotA)

      cot(A-B) = (cotAcotB+1)/(cotB-cotA)

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 6

      第二章整式的加減

      2、1整式

      1、單項(xiàng)式:由數(shù)字和字母乘積組成的式子。系數(shù),單項(xiàng)式的次數(shù)、單項(xiàng)式指的是數(shù)或字母的積的代數(shù)式、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式、因此,判斷代數(shù)式是否是單項(xiàng)式,關(guān)鍵要看代數(shù)式中數(shù)與字母是否是乘積關(guān)系,即分母中不含有字母,若式子中含有加、減運(yùn)算關(guān)系,其也不是單項(xiàng)式、

      2、單項(xiàng)式的系數(shù):是指單項(xiàng)式中的數(shù)字因數(shù);

      3、單項(xiàng)數(shù)的次數(shù):是指單項(xiàng)式中所有字母的指數(shù)的和、

      4、多項(xiàng)式:幾個(gè)單項(xiàng)式的和。判斷代數(shù)式是否是多項(xiàng)式,關(guān)鍵要看代數(shù)式中的每一項(xiàng)是否是單項(xiàng)式、每個(gè)單項(xiàng)式稱項(xiàng),常數(shù)項(xiàng),多項(xiàng)式的次數(shù)就是多項(xiàng)式中次數(shù)的次數(shù)。多項(xiàng)式的次數(shù)是指多項(xiàng)式里次數(shù)項(xiàng)的次數(shù),這里是次數(shù)項(xiàng),其次數(shù)是6;多項(xiàng)式的項(xiàng)是指在多項(xiàng)式中,每一個(gè)單項(xiàng)式、特別注意多項(xiàng)式的項(xiàng)包括它前面的性質(zhì)符號(hào)、

      5、它們都是用字母表示數(shù)或列式表示數(shù)量關(guān)系。注意單項(xiàng)式和多項(xiàng)式的'每一項(xiàng)都包括它前面的符號(hào)。

      6、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

      2、2整式的加減

      1、同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng)。與字母前面的系數(shù)(≠0)無關(guān)。

      2、同類項(xiàng)必須同時(shí)滿足兩個(gè)條件:(1)所含字母相同;(2)相同字母的次數(shù)相同,二者缺一不可、同類項(xiàng)與系數(shù)大小、字母的排列順序無關(guān)

      3、合并同類項(xiàng):把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng)。可以運(yùn)用交換律,結(jié)合律和分配律。

      4、合并同類項(xiàng)法則:合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并前各同類項(xiàng)的系數(shù)的和,且字母部分不變;

      5、去括號(hào)法則:去括號(hào),看符號(hào):是正號(hào),不變號(hào);是負(fù)號(hào),全變號(hào)。

      6、整式加減的一般步驟:

      一去、二找、三合

      (1)如果遇到括號(hào)按去括號(hào)法則先去括號(hào)、(2)結(jié)合同類項(xiàng)、(3)合并同類項(xiàng)葫蘆島

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 7

      初中數(shù)學(xué)基礎(chǔ)知識(shí)點(diǎn)

      平方根:①如果一個(gè)正數(shù)X的平方等于A,那么這個(gè)正數(shù)X就叫做A的算術(shù)平方根。②如果一個(gè)數(shù)X的平方等于A,那么這個(gè)數(shù)X就叫做A的平方根。③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。④求一個(gè)數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

      立方根:①如果一個(gè)數(shù)X的立方等于A,那么這個(gè)數(shù)X就叫做A的立方根。②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。③求一個(gè)數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

      實(shí)數(shù):①實(shí)數(shù)分有理數(shù)和無理數(shù)。②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

      初中數(shù)學(xué)平行四邊形的性質(zhì)知識(shí)點(diǎn)

      1.定義:兩組對(duì)邊分別平行的四邊形叫平行四邊形

      2.平行四邊形的性質(zhì)

      (1)平行四邊形的對(duì)邊平行且相等;

      (2)平行四邊形的鄰角互補(bǔ),對(duì)角相等;

      (3)平行四邊形的對(duì)角線互相平分;

      3.平行四邊形的'判定

      平行四邊形是幾何中一個(gè)重要內(nèi)容,如何根據(jù)平行四邊形的性質(zhì),判定一個(gè)四邊形是平行四邊形是個(gè)重點(diǎn),下面就對(duì)平行四邊形的五種判定方法,進(jìn)行劃分:

      第一類:與四邊形的對(duì)邊有關(guān)

      (1)兩組對(duì)邊分別平行的四邊形是平行四邊形;

      (2)兩組對(duì)邊分別相等的四邊形是平行四邊形;

      (3)一組對(duì)邊平行且相等的四邊形是平行四邊形;

      第二類:與四邊形的對(duì)角有關(guān)

      (4)兩組對(duì)角分別相等的四邊形是平行四邊形;

      第三類:與四邊形的對(duì)角線有關(guān)

      (5)對(duì)角線互相平分的四邊形是平行四邊形

      初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)

      1.一次函數(shù)

      (1)定義:形如y=kx+b(k、b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù)。特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為常數(shù),k≠0)

      所以,正比例函數(shù)是特殊的一次函數(shù)。

      (2)一次函數(shù)的圖像及性質(zhì):

      1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。

      2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)。

      3正比例函數(shù)的圖像總是過原點(diǎn)。

      4k,b與函數(shù)圖像所在象限的關(guān)系:

      當(dāng)k>0時(shí),y隨x的增大而增大;當(dāng)k<0時(shí),y隨x的增大而減小。

      當(dāng)k>0,b>0時(shí),直線通過一、二、三象限;

      當(dāng)k>0,b<0時(shí),直線通過一、三、四象限;

      當(dāng)k<0,b>0時(shí),直線通過一、二、四象限;

      當(dāng)k<0,b<0時(shí),直線通過二、三、四象限;

      當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

      這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。

      2.二次函數(shù)

      (1)定義:一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c(a,b,c為常數(shù),a≠0,),稱y為x的二次函數(shù)。

      (2)二次函數(shù)的三種表達(dá)式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0);

      頂點(diǎn)式:y=a(x-h)^2+k(拋物線的頂點(diǎn)P(h,k));

      交點(diǎn)式:

      (3)二次函數(shù)的圖像與性質(zhì)

      1二次函數(shù)的圖像是一條拋物線。

      2拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線x=-b/2a。

      特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)。

      3二次項(xiàng)系數(shù)a決定拋物線的開口方向。

      當(dāng)a>0時(shí),拋物線向上開口;

      當(dāng)a<0時(shí),拋物線向下開口。

      4一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

      當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

      5拋物線與x軸交點(diǎn)個(gè)數(shù)

      Δ=b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn);

      Δ=b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn);

      Δ=b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。

      3.反比例函數(shù)

      (1)定義:形如y=k/x(k為常數(shù)且k≠0) 的函數(shù),叫做反比例函數(shù)。

      (2)反比例函數(shù)圖像性質(zhì):

      1反比例函數(shù)的圖像為雙曲線;

      當(dāng)K>0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù);

      當(dāng)K<0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù);

      反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

      2由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點(diǎn)對(duì)稱。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 8

      一、平移變換:

      1。概念:在平面內(nèi),將一個(gè)圖形沿著某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)叫做平移。

      2。性質(zhì):(1)平移前后圖形全等;

      (2)對(duì)應(yīng)點(diǎn)連線平行或在同一直線上且相等。

      3。平移的作圖步驟和方法:

      (1)分清題目要求,確定平移的方向和平移的距離;

      (2)分析所作的圖形,找出構(gòu)成圖形的關(guān)健點(diǎn);

      (3)沿一定的方向,按一定的距離平移各個(gè)關(guān)健點(diǎn);

      (4)連接所作的各個(gè)關(guān)鍵點(diǎn),并標(biāo)上相應(yīng)的字母;

      (5)寫出結(jié)論。

      二、旋轉(zhuǎn)變換:

      1。概念:在平面內(nèi),將一個(gè)圖形繞一個(gè)定點(diǎn)沿某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)叫做旋轉(zhuǎn)。

      說明:

      (1)圖形的旋轉(zhuǎn)是由旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度所決定的;

      (2)旋轉(zhuǎn)過程中旋轉(zhuǎn)中心始終保持不動(dòng)。

      (3)旋轉(zhuǎn)過程中旋轉(zhuǎn)的方向是相同的。

      (4)旋轉(zhuǎn)過程靜止時(shí),圖形上一個(gè)點(diǎn)的旋轉(zhuǎn)角度是一樣的。⑤旋轉(zhuǎn)不改變圖形的大小和形狀。

      2。性質(zhì):

      (1)對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;

      (2)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;

      (3)旋轉(zhuǎn)前、后的.圖形全等。

      3。旋轉(zhuǎn)作圖的步驟和方法:

      (1)確定旋轉(zhuǎn)中心及旋轉(zhuǎn)方向、旋轉(zhuǎn)角;

      (2)找出圖形的關(guān)鍵點(diǎn);

      (3)將圖形的關(guān)鍵點(diǎn)和旋轉(zhuǎn)中心連接起來,然后按旋轉(zhuǎn)方向分別將它們旋轉(zhuǎn)一個(gè)旋轉(zhuǎn)角度數(shù),得到這些關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);

      (4)按原圖形順次連接這些對(duì)應(yīng)點(diǎn),所得到的圖形就是旋轉(zhuǎn)后的圖形。

      說明:在旋轉(zhuǎn)作圖時(shí),一對(duì)對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的夾角即為旋轉(zhuǎn)角。

      常見考法

      (1)把平移旋轉(zhuǎn)結(jié)合起來證明三角形全等;

      (2)利用平移變換與旋轉(zhuǎn)變換的性質(zhì),設(shè)計(jì)一些題目。

      誤區(qū)提醒

      (1)弄反了坐標(biāo)平移的上加下減,左減右加的規(guī)律;

      (2)平移與旋轉(zhuǎn)的性質(zhì)沒有掌握。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 9

      1.圓是以圓心為對(duì)稱中心的中心對(duì)稱圖形;同圓或等圓的半徑相等。

      2.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓。

      3.定理在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。

      4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合。

      5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合;圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合。

      6.不在同一直線上的三點(diǎn)確定一個(gè)圓。

      7.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對(duì)的兩條弧。

      推論1:

      ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧;

      ②弦的垂直平分線經(jīng)過圓心,并且平分弦所對(duì)的兩條弧;

      ③平分弦所對(duì)的一條弧的直徑,垂直平分弦,并且平分弦所對(duì)的另一條弧。

      推論2:圓的兩條平行弦所夾的弧相等。

      8.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對(duì)應(yīng)的其余各組量都相等。

      9.定理圓的內(nèi)接四邊形的對(duì)角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對(duì)角。

      10.經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。

      11.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的`直線是圓的切線。

      12.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑。

      13.經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)

      14.切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。

      15.圓的外切四邊形的兩組對(duì)邊的和相等外角等于內(nèi)對(duì)角。

      16.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。

      17.

      ①兩圓外離d>R+r

      ②兩圓外切d=R+r

      ③兩圓相交d>R-r)

      ④兩圓內(nèi)切d=R-r(R>r)

      ⑤兩圓內(nèi)含d=r)

      18.定理把圓分成n(n≥3):

      ⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形

      ⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形。

      19.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓。

      20.弧長計(jì)算公式:L=n兀R/180;扇形面積公式:S扇形=n兀R^2/360=LR/2。

      21.內(nèi)公切線長= d-(R-r)外公切線長= d-(R+r)。

      22.定理一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。

      23.推論1同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。

      24.推論2半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 10

      定義

      對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

      比值與比的概念

      比值是一個(gè)具體的數(shù)字如:AB/EF=2

      而比不是一個(gè)具體的數(shù)字如:AB/EF=2:1判定方法

      證兩個(gè)相似三角形應(yīng)該把表示對(duì)應(yīng)頂點(diǎn)的字母寫在對(duì)應(yīng)的位置上。如果是文字語言的“△ABC與△DEF相似”,那么就說明這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)可能沒有寫在對(duì)應(yīng)的位置上,而如果是符號(hào)語言的“△ABC∽△DEF”,那么就說明這兩個(gè)三角形的對(duì)應(yīng)頂點(diǎn)寫在了對(duì)應(yīng)的位置上。

      方法一(預(yù)備定理)

      平行于三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。(這是相似三角形判定的定理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線與線段成比例的證明)

      方法二

      如果一個(gè)三角形的'兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。

      方法三

      如果兩個(gè)三角形的兩組對(duì)應(yīng)邊成比例,并且相應(yīng)的夾角相等,

      那么這兩個(gè)三角形相似

      方法四

      如果兩個(gè)三角形的三組對(duì)應(yīng)邊成比例,那么這兩個(gè)三角形相似

      方法五(定義)

      對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形

      三個(gè)基本型

      Z型A型反A型

      方法六

      兩個(gè)直角三角形中,斜邊與直角邊對(duì)應(yīng)成比例,那么兩三角形相似。一定相似的三角形

      1、兩個(gè)全等的三角形

      (全等三角形是特殊的相似三角形,相似比為1:1)

      2、兩個(gè)等腰三角形

      (兩個(gè)等腰三角形,如果其中的任意一個(gè)頂角或底角相等,那么這兩個(gè)等腰三角形相似。)

      3、兩個(gè)等邊三角形

      (兩個(gè)等邊三角形,三角都是60度,且邊邊相等,所以相似)

      4、直角三角形中由斜邊的高形成的三個(gè)三角形(母子三角形)

      圖形的學(xué)習(xí)需要大家對(duì)于知識(shí)的詳細(xì)了解和滲透,而不是一帶而過。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 11

      其實(shí)角的大小與邊的長短沒有關(guān)系,角的大小決定于角的兩條邊張開的程度。

      角的靜態(tài)定義

      具有公共端點(diǎn)的兩條射線組成的圖形叫做角(angle)。這個(gè)公共端點(diǎn)叫做角的頂點(diǎn),這兩條射線叫做角的兩條邊。

      角的動(dòng)態(tài)定義

      一條射線繞著它的端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形叫做角。所旋轉(zhuǎn)射線的端點(diǎn)叫做角的頂點(diǎn),開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

      角的符號(hào)

      角的符號(hào):∠

      角的種類

      在動(dòng)態(tài)定義中,取決于旋轉(zhuǎn)的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負(fù)角、正角、優(yōu)角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

      銳角:大于0°,小于90°的角叫做銳角。

      直角:等于90°的角叫做直角。

      鈍角:大于90°而小于180°的角叫做鈍角。

      平角:等于180°的角叫做平角。

      優(yōu)角:大于180°小于360°叫優(yōu)角。

      劣角:大于0°小于180°叫做劣角,銳角、直角、鈍角都是劣角。

      角周角:等于360°的角叫做周角。

      負(fù)角:按照順時(shí)針方向旋轉(zhuǎn)而成的角叫做負(fù)角。

      正角:逆時(shí)針旋轉(zhuǎn)的角為正角。

      0角:等于零度的角。

      特殊角

      余角和補(bǔ)角:兩角之和為90°則兩角互為余角,兩角之和為180°則兩角互為補(bǔ)角。等角的余角相等,等角的補(bǔ)角相等。

      對(duì)頂角:兩條直線相交后所得的只有一個(gè)公共頂點(diǎn)且兩個(gè)角的兩邊互為反向延長線,這樣的兩個(gè)角叫做互為對(duì)頂角。兩條直線相交,構(gòu)成兩對(duì)對(duì)頂角。互為對(duì)頂角的兩個(gè)角相等。

      鄰補(bǔ)角:兩個(gè)角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關(guān)系的兩個(gè)角,互為鄰補(bǔ)角。

      內(nèi)錯(cuò)角:互相平行的'兩條直線直線,被第三條直線所截,如果兩個(gè)角都在兩條直線的

      內(nèi)側(cè),并且在第三條直線的兩側(cè),那么這樣的一對(duì)角叫做內(nèi)錯(cuò)角(alternate interior angle )。如:∠1和∠6,∠2和∠5

      同旁內(nèi)角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之間,具有這樣位置關(guān)系的一對(duì)角互為同旁內(nèi)角。如:∠1和∠5,∠2和∠6

      同位角:兩個(gè)角都在截線的同旁,又分別處在被截的兩條直線同側(cè),具有這樣位置關(guān)系的一對(duì)角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

      外錯(cuò)角:兩條直線被第三條直線所截,構(gòu)成了八個(gè)角。如果兩個(gè)角都在兩條被截線的外側(cè),并且在截線的兩側(cè),那么這樣的一對(duì)角叫做外錯(cuò)角。例如:∠4與∠7,∠3與∠8。

      同旁外角:兩個(gè)角都在截線的同一側(cè),且在兩條被截線之外,具有這樣位置關(guān)系的一對(duì)角互為同旁外角。如:∠4和∠8,∠3和∠7

      終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬于集合:

      A{bb=k_360+a,k∈Z}表示角度制;

      B{bb=2kπ+a,k∈Z}表示弧度制

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 12

      1、正數(shù)和負(fù)數(shù)的有關(guān)概念

      (1)正數(shù):比0大的數(shù)叫做正數(shù);

      負(fù)數(shù):比0小的數(shù)叫做負(fù)數(shù);

      0既不是正數(shù),也不是負(fù)數(shù)。

      (2)正數(shù)和負(fù)數(shù)表示相反意義的量。

      2、有理數(shù)的概念及分類

      3、有關(guān)數(shù)軸

      (1)數(shù)軸的三要素:原點(diǎn)、正方向、單位長度。數(shù)軸是一條直線。

      (2)所有有理數(shù)都可以用數(shù)軸上的點(diǎn)來表示,但數(shù)軸上的點(diǎn)不一定都是有理數(shù)。

      (3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點(diǎn)在原點(diǎn)的右側(cè),表示負(fù)數(shù)的點(diǎn)在原點(diǎn)的左側(cè)。

      (2)相反數(shù):符號(hào)不同、絕對(duì)值相等的兩個(gè)數(shù)互為相反數(shù)。

      若a、b互為相反數(shù),則a+b=0;

      相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。

      (3)絕對(duì)值最小的數(shù)是0;絕對(duì)值是本身的數(shù)是非負(fù)數(shù)。

      4、任何數(shù)的絕對(duì)值是非負(fù)數(shù)。

      最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。

      5、利用絕對(duì)值比較大小

      兩個(gè)正數(shù)比較:絕對(duì)值大的那個(gè)數(shù)大;

      兩個(gè)負(fù)數(shù)比較:先算出它們的絕對(duì)值,絕對(duì)值大的反而小。

      6、有理數(shù)加法

      (1)符號(hào)相同的兩數(shù)相加:和的符號(hào)與兩個(gè)加數(shù)的符號(hào)一致,和的絕對(duì)值等于兩個(gè)加數(shù)絕對(duì)值之和.

      (2)符號(hào)相反的兩數(shù)相加:當(dāng)兩個(gè)加數(shù)絕對(duì)值不等時(shí),和的符號(hào)與絕對(duì)值較大的加數(shù)的符號(hào)相同,和的絕對(duì)值等于加數(shù)中較大的.絕對(duì)值減去較小的絕對(duì)值;當(dāng)兩個(gè)加數(shù)絕對(duì)值相等時(shí),兩個(gè)加數(shù)互為相反數(shù),和為零.

      (3)一個(gè)數(shù)同零相加,仍得這個(gè)數(shù).

      加法的交換律:a+b=b+a

      加法的結(jié)合律:(a+b)+c=a+(b+c)

      7、有理數(shù)減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

      8、在把有理數(shù)加減混合運(yùn)算統(tǒng)一為最簡的形式,負(fù)數(shù)前面的加號(hào)可以省略不寫.

      例如:14+12+(-25)+(-17)可以寫成省略括號(hào)的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”

      9、有理數(shù)的乘法

      兩個(gè)數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),再把絕對(duì)值相乘;任何數(shù)與0相乘都得0。

      第一步:確定積的符號(hào) 第二步:絕對(duì)值相乘

      10、乘積的符號(hào)的確定

      幾個(gè)有理數(shù)相乘,因數(shù)都不為 0 時(shí),積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)確定:當(dāng)負(fù)因數(shù)有奇數(shù)個(gè)時(shí),積為負(fù);

      當(dāng)負(fù)因數(shù)有偶數(shù)個(gè)時(shí),積為正。幾個(gè)有理數(shù)相乘,有一個(gè)因數(shù)為零,積就為零。

      11、倒數(shù):乘積為1的兩個(gè)數(shù)互為倒數(shù),0沒有倒數(shù)。

      正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個(gè)數(shù)符號(hào)一定相同)

      倒數(shù)是本身的只有1和-1。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 13

      1.一元一次方程:只含有一個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程。

      2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0)。

      3.一元一次方程解法的一般步驟:整理方程……去分母……去括號(hào)……移項(xiàng)……合并同類項(xiàng)……系數(shù)化為1 ……(檢驗(yàn)方程的解)。

      4.列一元一次方程解應(yīng)用題:

      (1)讀題分析法:多用于“和,差,倍,分問題”

      仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,為,完成,增加,減少,配套—————”,利用這些關(guān)鍵字列出文字等式,并且據(jù)題意設(shè)出未知數(shù),最后利用題目中的量與量的`關(guān)系填入代數(shù)式,得到方程。

      (2)畫圖分析法:多用于“行程問題”

      利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ)。

      11.列方程解應(yīng)用題的常用公式:

      (1)行程問題:距離=速度·時(shí)間;

      (2)工程問題:工作量=工效·工時(shí);

      (3)比率問題:部分=全體·比率;

      (4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度—水流速度;

      (5)商品價(jià)格問題:售價(jià)=定價(jià)·折·,利潤=售價(jià)—成本,;

      (6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab,C正方形=4a,

      S正方形=a2,S環(huán)形=π(R2—r2),V長方體=abc,V正方體=a3,V圓柱=πR2h,V圓錐= πR2h。

      本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和解決問題的快樂很容易激起學(xué)生對(duì)數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問題研究起,進(jìn)行有效的數(shù)學(xué)活動(dòng)和合作交流,讓學(xué)生在主動(dòng)學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識(shí),提升能力,體會(huì)數(shù)學(xué)思想方法。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 14

      一、數(shù)與代數(shù)

      a、數(shù)與式:

      1、有理數(shù):

      ①整數(shù)→正整數(shù)/0/負(fù)整數(shù)

      ②分?jǐn)?shù)→正分?jǐn)?shù)/負(fù)分?jǐn)?shù)

      數(shù)軸:

      ①畫一條水平直線,在直線上取一點(diǎn)表示0(原點(diǎn)),選取某一長度作為單位長度,規(guī)定直線上向右的方向?yàn)檎较颍偷玫綌?shù)軸。

      ②任何一個(gè)有理數(shù)都可以用數(shù)軸上的一個(gè)點(diǎn)來表示。

      ③如果兩個(gè)數(shù)只有符號(hào)不同,那么我們稱其中一個(gè)數(shù)為另外一個(gè)數(shù)的相反數(shù),也稱這兩個(gè)數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個(gè)點(diǎn),位于原點(diǎn)的兩側(cè),并且與原點(diǎn)距離相等。

      ④數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。

      絕對(duì)值:

      ①在數(shù)軸上,一個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離叫做該數(shù)的絕對(duì)值。

      ②正數(shù)的絕對(duì)值是他的本身、負(fù)數(shù)的絕對(duì)值是他的相反數(shù)、0的絕對(duì)值是0。兩個(gè)負(fù)數(shù)比較大小,絕對(duì)值大的反而小。

      有理數(shù)的運(yùn)算:加法:

      ①同號(hào)相加,取相同的符號(hào),把絕對(duì)值相加。

      ②異號(hào)相加,絕對(duì)值相等時(shí)和為0;絕對(duì)值不等時(shí),取絕對(duì)值較大的數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。

      ③一個(gè)數(shù)與0相加不變。

      減法:減去一個(gè)數(shù),等于加上這個(gè)數(shù)的相反數(shù)。

      乘法:

      ①兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),絕對(duì)值相乘。

      ②任何數(shù)與0相乘得0。

      ③乘積為1的兩個(gè)有理數(shù)互為倒數(shù)。

      除法:

      ①除以一個(gè)數(shù)等于乘以一個(gè)數(shù)的倒數(shù)。

      ②0不能作除數(shù)。

      乘方:求n個(gè)相同因數(shù)a的積的'運(yùn)算叫做乘方,乘方的結(jié)果叫冪,a叫底數(shù),n叫次數(shù)。

      混合順序:先算乘法,再算乘除,最后算加減,有括號(hào)要先算括號(hào)里的。

      2、實(shí)數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

      平方根:

      ①如果一個(gè)正數(shù)x的平方等于a,那么這個(gè)正數(shù)x就叫做a的算術(shù)平方根。

      ②如果一個(gè)數(shù)x的平方等于a,那么這個(gè)數(shù)x就叫做a的平方根。

      ③一個(gè)正數(shù)有2個(gè)平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

      ④求一個(gè)數(shù)a的平方根運(yùn)算,叫做開平方,其中a叫做被開方數(shù)。

      立方根:

      ①如果一個(gè)數(shù)x的立方等于a,那么這個(gè)數(shù)x就叫做a的立方根。

      ②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

      ③求一個(gè)數(shù)a的立方根的運(yùn)算叫開立方,其中a叫做被開方數(shù)。

      實(shí)數(shù):

      ①實(shí)數(shù)分有理數(shù)和無理數(shù)。

      ②在實(shí)數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對(duì)值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對(duì)值的意義完全一樣。

      ③每一個(gè)實(shí)數(shù)都可以在數(shù)軸上的一個(gè)點(diǎn)來表示。

      3、代數(shù)式

      代數(shù)式:單獨(dú)一個(gè)數(shù)或者一個(gè)字母也是代數(shù)式。

      合并同類項(xiàng):

      ①所含字母相同,并且相同字母的指數(shù)也相同的項(xiàng),叫做同類項(xiàng)。

      ②把同類項(xiàng)合并成一項(xiàng)就叫做合并同類項(xiàng)。

      ③在合并同類項(xiàng)時(shí),我們把同類項(xiàng)的系數(shù)相加,字母和字母的指數(shù)不變。

      4、整式與分式

      整式:

      ①數(shù)與字母的乘積的代數(shù)式叫單項(xiàng)式,幾個(gè)單項(xiàng)式的和叫多項(xiàng)式,單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。

      ②一個(gè)單項(xiàng)式中,所有字母的指數(shù)和叫做這個(gè)單項(xiàng)式的次數(shù)。

      ③一個(gè)多項(xiàng)式中,次數(shù)最高的項(xiàng)的次數(shù)叫做這個(gè)多項(xiàng)式的次數(shù)。

      整式運(yùn)算:加減運(yùn)算時(shí),如果遇到括號(hào)先去括號(hào),再合并同類項(xiàng)。

      冪的運(yùn)算:am+an=a(m+n)

      (am)n=amn

      (a/b)n=an/bn 除法一樣。

      整式的乘法:

      ①單項(xiàng)式與單項(xiàng)式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。

      ②單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。

      ③多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另外一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。

      公式兩條:平方差公式/完全平方公式

      整式的除法:

      ①單項(xiàng)式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對(duì)于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個(gè)因式。

      ②多項(xiàng)式除以單項(xiàng)式,先把這個(gè)多項(xiàng)式的每一項(xiàng)分別除以單項(xiàng)式,再把所得的商相加。

      分解因式:把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,這種變化叫做把這個(gè)多項(xiàng)式分解因式。

      方法:提公因式法、運(yùn)用公式法、分組分解法、十字相乘法。

      分式:

      ①整式a除以整式b,如果除式b中含有分母,那么這個(gè)就是分式,對(duì)于任何一個(gè)分式,分母不為0。

      ②分式的分子與分母同乘以或除以同一個(gè)不等于0的整式,分式的值不變。

      初中數(shù)學(xué)知識(shí)點(diǎn):直線的位置與常數(shù)的關(guān)系

      ①k>0則直線的傾斜角為銳角

      ②k<0則直線的傾斜角為鈍角

      ③圖像越陡|k|越大

      ④b>0直線與y軸的交點(diǎn)在x軸的上方

      ⑤b<0直線與y軸的交點(diǎn)在x軸的下方

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 15

      三角和的公式

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      倍角公式

      tan2A = 2tanA/(1-tan2 A)

      Sin2A=2SinA?CosA

      Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

      三倍角公式

      sin3A = 3sinA-4(sinA)3;

      cos3A = 4(cosA)3 -3cosA

      tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

      三角函數(shù)特殊值

      α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

      α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

      α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

      a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

      α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

      α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

      α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

      α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

      α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

      α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

      α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

      α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

      三角函數(shù)記憶順口溜

      1三角函數(shù)記憶口訣

      “奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的'名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號(hào)看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號(hào)還是負(fù)號(hào)。

      以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號(hào)為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區(qū)間(π/2,π)上小于零,所以右邊符號(hào)為負(fù),所以右邊為-sinα。

      2符號(hào)判斷口訣

      全,S,T,C,正。這五個(gè)字口訣的意思就是說:第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;第二象限內(nèi)只有正弦是“+”,其余全部是“-”;第三象限內(nèi)只有正切是“+”,其余全部是“-”;第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

      也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、余弦指的是對(duì)應(yīng)象限三角函數(shù)為正值的名稱。口訣中未提及的都是負(fù)值。

      “ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對(duì)應(yīng)的三角函數(shù)為正值。

      3三角函數(shù)順口溜

      三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖像單位圓,周期奇偶增減現(xiàn)。

      同角關(guān)系很重要,化簡證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割;

      中心記上數(shù)字一,連結(jié)頂點(diǎn)三角形。向下三角平方和,倒數(shù)關(guān)系是對(duì)角,

      頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小,

      變成銳角好查表,化簡證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,

      將其后者視銳角,符號(hào)原來函數(shù)判。兩角和的余弦值,化為單角好求值,

      余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱。

      計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡易變。

      逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明。

      萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用;

      一加余弦想余弦,一減余弦想正弦,冪升一次角減半,升冪降次它為范;

      三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;

      利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 16

      初中數(shù)學(xué)的學(xué)科地位很高,一直以來是三大學(xué)科之一,影響著物理化學(xué)的學(xué)習(xí)。

      圓心角

      在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。

      推理過程

      根據(jù)旋轉(zhuǎn)的性質(zhì),將∠aob繞圓心o旋轉(zhuǎn)到∠aob的`位置時(shí),顯然∠aob=∠aob,射線oa與oa重合,ob與ob重合,而同圓的半徑相等,oa=oa,ob=ob,從而點(diǎn)a與a重合,b與b重合。

      因此,弧ab與弧ab重合,ab與ab重合。即

      弧ab=弧ab,ab=ab。

      則得到上面定理。

      同樣還可以得到:

      在同圓或等圓中,如果兩條弧相等,那么他們所對(duì)的圓心角相等,所對(duì)的弦相等,所對(duì)的弦心距也相等。

      在同圓或等圓中,如果兩條弦相等,那么他們所對(duì)的圓心角相等,所對(duì)的弧相等,所對(duì)的弦心距也相等。

      所以,在同圓或等圓中,兩個(gè)圓心角、兩條弧、兩條弦中有一組量相等,它們所對(duì)應(yīng)的其余各組量也相等。

      圓的圓心角知識(shí)要領(lǐng)很容易掌握,經(jīng)常會(huì)出現(xiàn)在關(guān)于圓的證明題中。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 17

      三角形兩邊:

      定理三角形兩邊的和大于第三邊。

      推論三角形兩邊的差小于第三邊。

      三角形中位線定理:

      三角形的中位線平行于第三邊,并且等于它的一半。

      三角形的重心:

      三角形的重心到頂點(diǎn)的距離是它到對(duì)邊中點(diǎn)距離的2倍。

      在三角形中,連接一個(gè)頂點(diǎn)和它對(duì)邊中點(diǎn)的線段叫做三角形的中線,三角形的三條中線交于一點(diǎn),這一點(diǎn)叫做“三角形的重心”。

      與三角形有關(guān)的角:

      1、三角形的內(nèi)角和定理:三角形的內(nèi)角和為180°,與三角形的.形狀無關(guān)。

      2、直角三角形兩個(gè)銳角的關(guān)系:直角三角形的兩個(gè)銳角互余(相加為90°)。有兩個(gè)角互余的三角形是直角三角形。

      3、三角形外角的性質(zhì):三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角之和;三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角;三角形三個(gè)外角和為360°。

      全等三角形的性質(zhì)和判定:

      全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對(duì)折也會(huì)構(gòu)成全等三角形。

      (邊邊邊),即三邊對(duì)應(yīng)相等的兩個(gè)三角形全等。

      (邊角邊),即三角形的其中兩條邊對(duì)應(yīng)相等,且兩條邊的夾角也對(duì)應(yīng)相等的兩個(gè)三角形全等。

      (角邊角),即三角形的其中兩個(gè)角對(duì)應(yīng)相等,且兩個(gè)角夾的的邊也對(duì)應(yīng)相等的兩個(gè)三角形全等。

      (角角邊),即三角形的其中兩個(gè)角對(duì)應(yīng)相等,且對(duì)應(yīng)相等的角所對(duì)應(yīng)的邊也對(duì)應(yīng)相等的兩個(gè)三角形全等。

      (斜邊、直角邊),即在直角三角形中一條斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等。

      等邊三角形的判定:

      1、三邊相等的三角形是等邊三角形(定義)。

      2、三個(gè)內(nèi)角都相等的三角形是等邊三角形。

      3、有一個(gè)角是60度的等腰三角形是等邊三角形。

      4、有兩個(gè)角等于60度的三角形是等邊三角形。

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 18

      基本定理

      1、過兩點(diǎn)有且只有一條直線

      2、兩點(diǎn)之間線段最短

      3、同角或等角的補(bǔ)角相等

      4、同角或等角的余角相等

      5、過一點(diǎn)有且只有一條直線和已知直線垂直

      6、直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短

      7、平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行

      8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

      9、同位角相等,兩直線平行

      10、內(nèi)錯(cuò)角相等,兩直線平行

      11、同旁內(nèi)角互補(bǔ),兩直線平行

      12、兩直線平行,同位角相等

      13、兩直線平行,內(nèi)錯(cuò)角相等

      14、兩直線平行,同旁內(nèi)角互補(bǔ)

      15、定理xxx兩邊的和大于第三邊

      16、推論xxx兩邊的差小于第三邊

      17、xxx內(nèi)角和定理xxx三個(gè)內(nèi)角的和等于180°

      18、推論1直角xxx的兩個(gè)銳角互余

      19、推論2 xxx的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和

      20、推論3 xxx的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角

      21、全等xxx的對(duì)應(yīng)邊、對(duì)應(yīng)角相等

      22、邊角邊公理(SAS)有兩邊和它們的夾角對(duì)應(yīng)相等的兩個(gè)xxx全等

      23、角邊角公理( ASA)有兩角和它們的夾邊對(duì)應(yīng)相等的兩個(gè)xxx全等

      24、推論(AAS)有兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)xxx全等

      25、邊邊邊公理(SSS)有三邊對(duì)應(yīng)相等的兩個(gè)xxx全等

      26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對(duì)應(yīng)相等的兩個(gè)直角xxx全等

      27、定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等

      28、定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上

      29、角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合

      30、等腰xxx的性質(zhì)定理等腰xxx的兩個(gè)底角相等(即等邊對(duì)等角)

      31、推論1等腰xxx頂角的平分線平分底邊并且垂直于底邊

      32、等腰xxx的頂角平分線、底邊上的中線和底邊上的高互相重合

      33、推論3等邊xxx的各角都相等,并且每一個(gè)角都等于60°

      34、等腰xxx的判定定理如果一個(gè)xxx有兩個(gè)角相等,那么這兩個(gè)角所對(duì)的邊也相等(等角對(duì)等邊)

      35、推論1三個(gè)角都相等的xxx是等邊xxx

      36、推論2有一個(gè)角等于60°的等腰xxx是等邊xxx

      37、在直角xxx中,如果一個(gè)銳角等于30°那么它所對(duì)的直角邊等于斜邊的一半

      38、直角xxx斜邊上的中線等于斜邊上的一半

      39、定理線段垂直平分線上的`點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等

      40、逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上

      41、線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合

      42、定理1關(guān)于某條直線對(duì)稱的兩個(gè)圖形是全等形

      43、定理2如果兩個(gè)圖形關(guān)于某直線對(duì)稱,那么對(duì)稱軸是對(duì)應(yīng)點(diǎn)連線的垂直平分線

      44、定理3兩個(gè)圖形關(guān)于某直線對(duì)稱,如果它們的對(duì)應(yīng)線段或延長線相交,那么交點(diǎn)在對(duì)稱軸上

      45、逆定理如果兩個(gè)圖形的對(duì)應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對(duì)稱

      46、勾股定理直角xxx兩直角邊a、b的平方和、等于斜邊c的平方,即a2+b2=c2

      47、勾股定理的逆定理如果xxx的三邊長a、b、c有關(guān)系a2+b2=c2,那么這個(gè)xxx是直角xxx

      48、定理四邊形的內(nèi)角和等于360°

      49、四邊形的外角和等于360°

      50、多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

      初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié) 19

      一、圓的定義

      1.平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。

      2.平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。

      二、圓心

      1.定義1中的定點(diǎn)為圓心。

      2.定義2中繞的那一端的端點(diǎn)為圓心。

      3.圓任意兩條對(duì)稱軸的交點(diǎn)為圓心。

      4.垂直于圓內(nèi)任意一條弦且兩個(gè)端點(diǎn)在圓上的線段的二分點(diǎn)為圓心。

      注:圓心一般用字母O表示

      5.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

      6.半徑:連接圓心和圓上任意一點(diǎn)的線段,叫做圓的半徑。半徑一般用字母r表示。

      7.圓的直徑和半徑都有無數(shù)條。圓是軸對(duì)稱圖形,每條直徑所在的直線是圓的對(duì)稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d。

      8.圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。

      三、圓的基本性質(zhì)

      1.圓的對(duì)稱性

      (1)圓是軸對(duì)稱圖形,它的對(duì)稱軸是直徑所在的直線。

      (2)圓是中心對(duì)稱圖形,它的對(duì)稱中心是圓心。

      (3)圓是旋轉(zhuǎn)對(duì)稱圖形。

      2.垂徑定理

      (1)垂直于弦的直徑平分這條弦,且平分這條弦所對(duì)的兩條弧。

      (2)推論:

      平分弦(非直徑)的直徑,垂直于弦且平分弦所對(duì)的兩條弧。

      平分弧的直徑,垂直平分弧所對(duì)的弦。

      3.圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。圓周角的度數(shù)等于它所對(duì)弧度數(shù)的一半。

      (1)同弧所對(duì)的圓周角相等。

      (2)直徑所對(duì)的圓周角是直角;圓周角為直角,它所對(duì)的弦是直徑。

      4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對(duì)量中只要有一對(duì)量相等,其余四對(duì)量也分別相等。

      5.夾在平行線間的`兩條弧相等。

      (1)過兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線段的中垂線上。

      (2)不在同一直線上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。

      (直角三角形的外心就是斜邊的中點(diǎn)。)

      6.直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。

      直線與圓有兩個(gè)交點(diǎn),直線與圓相交;直線與圓只有一個(gè)交點(diǎn),直線與圓相切;直線與圓沒有交點(diǎn),直線與圓相離。

      四、圓和圓

      1.兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)圓的外離。

      2.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做兩個(gè)圓的外切。

      3.兩個(gè)圓有兩個(gè)交點(diǎn),叫做兩個(gè)圓的相交。

      4.兩個(gè)圓有唯一的公共點(diǎn)且除了這個(gè)公共點(diǎn)外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩個(gè)圓的內(nèi)切。

      5.兩個(gè)圓沒有公共點(diǎn)且每個(gè)圓的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓的內(nèi)含。

      五、正多邊形和圓

      1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

      2.正多邊形與圓的關(guān)系:

      (1)將一個(gè)圓n(n≥3)等分(可以借助量角器),依次連結(jié)各等分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正多邊形。

      (2)這個(gè)圓是這個(gè)正多邊形的外接圓。

    【初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

    初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)09-19

    初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)06-21

    初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)03-11

    初中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)04-08

    初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)06-24

    初中數(shù)學(xué)必學(xué)的知識(shí)點(diǎn)總結(jié)01-14

    數(shù)學(xué)初中知識(shí)點(diǎn)總結(jié)01-15

    初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-30

    初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-03

    初中數(shù)學(xué)圓的知識(shí)點(diǎn)總結(jié)06-07

    gogogo高清在线观看| 日韩精品一区二区三区免费视频| 久久久久精品无码专区首页| 国产精品入口牛牛影视| 高潮又爽又大又黄无遮挡免费| 国内精品久久久久影院优| 亚洲精品乱码久久久久久蜜桃图片| 久久精品国产99久久无毒不卡| 欧美V日韩V亚洲V国产V精品综合| 国产日韩精品一区二区三区在线|