高中數學的基本知識點總結
總結是指對某一階段的工作、學習或思想中的經驗或情況進行分析研究,做出帶有規(guī)律性結論的書面材料,它是增長才干的一種好辦法,讓我們一起來學習寫總結吧。總結怎么寫才是正確的呢?以下是小編精心整理的高中數學基本知識點總結,僅供參考,希望能夠幫助到大家。
高中數學基本知識點總結 1
(1)不等關系
感受在現實世界和日常生活中存在著大量的不等關系,了解不等式(組)的實際背景。
(2)一元二次不等式
①經歷從實際情境中抽象出一元二次不等式模型的過程。
②通過函數圖象了解一元二次不等式與相應函數、方程的聯(lián)系。
③會解一元二次不等式,對給定的一元二次不等式,嘗試設計求解的`程序框圖。
(3)二元一次不等式組與簡單線性規(guī)劃問題
①從實際情境中抽象出二元一次不等式組。
②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。
③從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。
(4)基本不等式
①探索并了解基本不等式的證明過程。
②會用基本不等式解決簡單的(小)值問題。
高中數學基本知識點總結 2
簡單隨機抽樣的定義:
一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。
簡單隨機抽樣的特點:
(1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的`樣本時,每次抽取一個個體時任一個體被抽到的概率為___;在整個抽樣過程中各個個體被抽到的概率為____。
(2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等。
(3)簡單隨機抽樣方法,體現了抽樣的客觀性與公平性,是其他更復雜抽樣方法的基礎。
(4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣。
簡單抽樣常用方法:
(1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數不多時優(yōu)點:抽簽法簡便易行,當總體的個體數不太多時適宜采用抽簽法。
(2)隨機數表法:隨機數表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數字;第三步,獲取樣本號碼概率。
高中數學基本知識點總結 3
集合的分類:
(1)按元素屬性分類,如點集,數集。
(2)按元素的個數多少,分為有/無限集
關于集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
(2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構成集合,關鍵在于看這些對象是否有明確的標準。
集合可以根據它含有的元素的個數分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負整數全體構成的集合,叫做自然數集,記作N。
在自然數集內排除0的'集合叫做正整數集,記作N+或N_。
整數全體構成的集合,叫做整數集,記作Z。
有理數全體構成的集合,叫做有理數集,記作Q。(有理數是整數和分數的統(tǒng)稱,一切有理數都可以化成分數的形式。)
實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環(huán)小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)
1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}。
有些集合的元素較多,元素的排列又呈現一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大于100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}。
無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}。
2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質來描述。
例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大于0”
而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。
一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質p(x),而不屬于集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特征性質。于是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特征性質描述法,簡稱描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中數學基本知識點總結 4
空間幾何體表面積體積公式:
1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)。
2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高。
3、a—邊長,S=6a2,V=a3。
4、長方體a—長,b—寬,c—高S=2(ab+ac+bc)V=abc。
5、棱柱S—h—高V=Sh。
6、棱錐S—h—高V=Sh/3。
7、S1和S2—上、下h—高V=h[S1+S2+(S1S2)^1/2]/3。
8、S1—上底面積,S2—下底面積,S0—中h—高,V=h(S1+S2+4S0)/6。
9、圓柱r—底半徑,h—高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h。
10、空心圓柱R—外圓半徑,r—內圓半徑h—高V=πh(R^2—r^2)。
11、r—底半徑h—高V=πr^2h/3。
12、r—上底半徑,R—下底半徑,h—高V=πh(R2+Rr+r2)/313、球r—半徑d—直徑V=4/3πr^3=πd^3/6。
14、球缺h—球缺高,r—球半徑,a—球缺底半徑V=πh(3a2+h2)/6=πh2(3r—h)/3。
15、球臺r1和r2—球臺上、下底半徑h—高V=πh[3(r12+r22)+h2]/6。
16、圓環(huán)體R—環(huán)體半徑D—環(huán)體直徑r—環(huán)體截面半徑d—環(huán)體截面直徑V=2π2Rr2=π2Dd2/4。
17、桶狀體D—桶腹直徑d—桶底直徑h—桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)。
高中數學基本知識點總結 5
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動點的軌跡方程的基本步驟。
1、建立適當的坐標系,設出動點M的坐標;
2、寫出點M的集合;
3、列出方程=0;
4、化簡方程為最簡形式;
5、檢驗。
二、求動點的軌跡方程的常用方法:
求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3、相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
4、參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。
5、交軌法:將兩動曲線方程中的參數消去,得到不含參數的'方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動點軌跡方程的一般步驟:
①建系——建立適當的坐標系;
②設點——設軌跡上的任一點P(x,y);
③列式——列出動點p所滿足的關系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高中數學基本知識點總結 6
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1)元素的確定性;
2)元素的互異性;
3)元素的無序性。
說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。
2)集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N_或N+整數集Z有理數集Q實數集R
關于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a:A。
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1)有限集含有有限個元素的集合。
2)無限集含有無限個元素的集合。
3)空集不含任何元素的集合例:{x|x2=—5}。
二、集合間的基本關系
1、“包含”關系子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B或集合B不包含集合A記作AB或BA。
2、“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={x|x2—1=0}B={—11}“元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B。
①任何一個集合是它本身的子集。AA
②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果ABBC那么AC
④如果AB同時BA那么A=B
3、不含任何元素的集合叫做空集,記為Φ。
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1、交集的.定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集。
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集與并集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}。
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
高中數學基本知識點總結 7
空間兩條直線只有三種位置關系:平行、相交、異面。
按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法。
兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法。
若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;
(2)沒有公共點——平行或異面。
直線和平面的位置關系:
直線和平面只有三種位置關系:在平面內、與平面相交、與平面平行。
①直線在平面內——有無數個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時,所成的角為直角;b、直線與平面平行或在平面內,所成的角為0°角。
由此得直線和平面所成角的取值范圍為[0°,90°]。
最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角。
三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的.射影垂直,那么它也與這條斜線垂直。
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高中數學基本知識點總結 8
1.不等式的定義:a-bb, a-b=0a=b, a-b0a
① 其實質是運用實數運算來定義兩個實數的大小關系。它是本章的基礎,也是證明不等式與解不等式的主要依據。
②可以結合函數單調性的`證明這個熟悉的知識背景,來認識作差法比大小的理論基礎是不等式的性質。
作差后,為判斷差的符號,需要分解因式,以便使用實數運算的符號法則。
2.不等式的性質:
① 不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1) abb
(2) acac (傳遞性)
(3) ab+c (cR)
(4) c0時,abc
c0時,abac
運算性質有:
(1) ada+cb+d。
(2) a0, c0acbd。
(3) a0anbn (nN, n1)。
(4) a0isin;N, n1)。
一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和應用不等式性質。
② 關于不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函數性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關系。
不等式的基本性質知識點的相關內容就是這些,希望考生可以深入理解,全面把握。
高中數學基本知識點總結 9
第一章三角函數
1.1任意角和弧度制
正角、負角、零角正角、負角、零角
象限角、軸線角象限角、軸線角
終邊相同的角終邊相同的角
弧度制、弧度與角度的互化弧度制、弧度與角度的互化
1.2任意角的三角函數
任意角的三角函數任意角的三角函數
三角函數線(正弦線、余弦線、正切線)三角函數線(正弦線、余弦線、正切線)
同角三角函數的基本關系式同角三角函數的基本關系式
1.3三角函數的誘導公式
三角函數的誘導公式三角函數的誘導公式
1.4三角函數的圖象與性質
正弦、余弦函數的圖象與性質(定義域、值域、單調性、奇偶性等)正弦、余弦函數的圖象與性質(定義域、值域、單調性、奇偶性等)
正切、余切函數的圖象與性質(定義域、值域、單調性、奇偶性等)正切、余切函數的圖象與性質(定義域、值域、單調性、奇偶性等)
1.5函數y=Asin(ωxφ)的圖象
函數y=Asin(ωxφ)的圖象與性質函數y=Asin(wx φ)的圖象與性質
1.6三角函數模型的簡單應用
第二章平面向量
2.1平面向量的實際背景及基本概念
向量的概念及幾何表示向量的概念及幾何表示
零向量與單位向量零向量與單位向量
相等向量與共線向量的定義相等向量與共線向量的'定義
2.2平面向量的線性運算
向量的加、減法運算及幾何意義向量的加、減法運算及幾何意義
向量數乘運算及幾何意義向量數乘運算及幾何意義
向量的線性運算及坐標表示向量的線性運算及坐標表示
2.3平面向量的基本定理及坐標表示
平面向量基本定理及坐標表示平面向量基本定理及坐標表示
向量共線的充要條件及坐標表示向量共線的充要條件及坐標表示
2.4平面向量的數量積
向量數量積的含義及幾何意義向量數量積的含義及幾何意義
向量數量積的運算向量數量積的運算
用數量積判斷兩個向量的垂直關系用數量積判斷兩個向量的垂直關系
用坐標表示向量的數量積用坐標表示向量的數量積
向量模的計算向量模的計算
用數量積表示兩個向量的夾角用數量積表示兩個向量的夾角
2.5平面向量應用舉例
平面向量的應用平面向量的應用
第三章三角恒等變換
3.1兩角和與差的正弦、余弦和正切公式
兩角和與差的三角函數及三角恒等變換兩角和與差的三角函數及三角恒等變換
3.2簡單的三角恒等變換
兩角和與差的三角函數及三角恒等變換
高中數學基本知識點總結 10
定義:
形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
定義域和值域:
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質:
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x<0 x="">0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大于0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的`所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
(6)顯然冪函數無界。
高中數學基本知識點總結 11
一、集合與簡易邏輯
集合具有四個性質 廣泛性 集合的元素什么都可以
確定性 集合中的元素必須是確定的,比如說是好學生就不具有這種性質,因為它的概念是模糊不清的
互異性 集合中的元素必須是互不相等的,一個元素不能重復出現
無序性 集合中的元素與順序無關
二、函數
這是個重點,但是說起來也不好說,要作專題訓練,比如說二次函數,指數對數函數等等做這一類型題的時候,要掌握幾個函數思想如 構造函數 函數與方程結合 對稱思想,換元等等
三、數列
這也是個比較重要的題型,做體的時候要有整體思想,整體代換,等比等差要分開來,也要注意聯(lián)系,這樣才能做好,注意觀察數列的形式判斷是什么數列,還要掌握求數列通向公式的`幾種方法,和求和公式,求和方法,比如裂項相消,錯位相減,公式法,分組求和法等等
四、三角函數
三角函數不是考試題型,只是個應用的知識點,所以只要記熟特殊角的三角函數值和一些重要的定理就行
五、平面向量
這是個比較抽象的把幾何與代數結合起來的重難點,結體的時候要有技巧,主要就是把基本知識掌握到位,注意拓展,另外要多做題,見的題型多,結體的時候就有思路,能夠把問題簡單化,有利于提高做題效率
高一的數學只是入門,只要把高一數學知識點掌握了,做題就沒什么大問題了,數學就可以上130。
高中數學基本知識點總結 12
(1)高中函數公式的變量:因變量,自變量。
在用圖象表示變量之間的關系時,通常用水平方向的數軸上的點自變量,用豎直方向的數軸上的點表示因變量。
(2)一次函數:①若兩個變量,間的'關系式可以表示成(為常數,不等于0)的形式,則稱是的一次函數。②當=0時,稱是的正比例函數。
(3)高中函數的一次函數的圖象及性質
①把一個函數的自變量與對應的因變量的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象。
②正比例函數=的圖象是經過原點的一條直線。
③在一次函數中,當0,O,則經2、3、4象限;當0,0時,則經1、2、4象限;當0,0時,則經1、3、4象限;當0,0時,則經1、2、3象限。
④當0時,的值隨值的增大而增大,當0時,的值隨值的增大而減少。
(4)高中函數的二次函數:
①一般式:
,對稱軸是頂點是;
②頂點式:,對稱軸是頂點是;
③交點式:,其中,是拋物線與x軸的交點
高中數學基本知識點總結 13
一、圓及圓的相關量的定義
1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫
做直徑。
3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
二、有關圓的字母表示方法
圓--⊙ 半徑—r 弧--⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S三、有關圓的基本性質與定理(27個)
1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO
2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定
理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。
4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。
5.一條弧所對的圓周角等于它所對的圓心角的一半。
6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
7.不在同一直線上的3個點確定一個圓。
8.一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形3邊距離相等。
9.直線AB與圓O的位置關系(設OP⊥AB于P,則PO是AB到圓心的距
離):
AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO
10.圓的切線垂直于過切點的直徑;經過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。
11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且R≥r,圓心距為P):
外離P>R+r;外切P=R+r;相交R-r
三、有關圓的計算公式
1.圓的周長C=2πr=πd
2.圓的面積S=s=πr?
3.扇形弧長l=nπr/180
4.扇形面積S=nπr? /360=rl/2
5.圓錐側面積S=πrl
四、圓的方程
1.圓的標準方程
在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是
(x-a)^2+(y-b)^2=r^2
2.圓的一般方程
把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是
x^2+y^2+Dx+Ey+F=0
和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2
相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.
五、圓與直線的位置關系判斷
平面內,直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是
討論如下2種情況:
(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],
代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.
利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離
(2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)
將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2
令y=b,求出此時的兩個x值x1,x2,并且我們規(guī)定x1
當x=-C/Ax2時,直線與圓相離
當x1
當x=-C/A=x1或x=-C/A=x2時,直線與圓相切
圓的定理:
1.不在同一直線上的三點確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1.①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2.圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的集合
5.圓的內部可以看作是圓心的距離小于半徑的點的.集合
6.圓的外部可以看作是圓心的距離大于半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等
11.定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角
12.①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
13.切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理 圓的切線垂直于經過切點的半徑
15.推論1 經過圓心且垂直于切線的直線必經過切點
16.推論2 經過切點且垂直于切線的直線必經過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-rr)
④兩圓內切 d=R-r(R>r)
⑤兩圓內含dr)
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成n(n≥3):
(1)依次連結各分點所得的多邊形是這個圓的內接正n邊形
(2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24.正n邊形的每個內角都等于(n-2)×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
【高中數學的基本知識點總結】相關文章:
高中數學基本知識點總結12-03
高中數學基本知識點總結9篇11-23
高中數學基本知識點總結(9篇)11-23
高中數學基本知識點總結十篇12-03
電路的基本知識點總結01-13
高中數學知識點總結09-29
高中數學數列知識點總結04-24
高中數學幾何知識點總結10-31
高中數學知識點總結02-20