www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    數(shù)學(xué)知識點歸納總結(jié)最新

    時間:2024-05-08 08:34:17 知識點總結(jié) 我要投稿
    • 相關(guān)推薦

    數(shù)學(xué)知識點歸納總結(jié)最新

      總結(jié)是指社會團體、企業(yè)單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經(jīng)驗,找出差距,得出教訓(xùn)和一些規(guī)律性認識的一種書面材料,它可以使我們更有效率,讓我們好好寫一份總結(jié)吧。但是總結(jié)有什么要求呢?下面是小編幫大家整理的數(shù)學(xué)知識點歸納總結(jié)最新,希望能夠幫助到大家。

    數(shù)學(xué)知識點歸納總結(jié)最新

    數(shù)學(xué)知識點歸納總結(jié)最新1

      集合的分類

    (1)按元素屬性分類,如點集,數(shù)集。

      (2)按元素的個數(shù)多少,分為有/無限集

      關(guān)于集合的概念:

      (1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構(gòu)成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

      (2)互異性:對于一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

      (3)無序性:判斷一些對象時候構(gòu)成集合,關(guān)鍵在于看這些對象是否有明確的標(biāo)準(zhǔn)。

      集合可以根據(jù)它含有的元素的個數(shù)分為兩類:

      含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

      非負整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N;

      在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N;

      整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z;

      有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q;(有理數(shù)是整數(shù)和分數(shù)的統(tǒng)稱,一切有理數(shù)都可以化成分數(shù)的形式。)

      實數(shù)全體構(gòu)成的集合,叫做實數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分數(shù)。數(shù)學(xué)上,實數(shù)直觀地定義為和數(shù)軸上的點一一對應(yīng)的數(shù)。)

      1、列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號“{}”內(nèi)表示這個集合,例如,由兩個元素0,1構(gòu)成的'集合可表示為{0,1}、

      有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

      例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}、

      無限集有時也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}、

      2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。

      例如:正偶數(shù)構(gòu)成的集合,它的每一個元素都具有性質(zhì):“能被2整除,且大于0”

      而這個集合外的其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為

      {x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號內(nèi)豎線左邊的X表示這個集合的任意一個元素,元素X從實數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。

      一般地,如果在集合I中,屬于集合A的任意一個元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}

      它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡稱描述法。

      例如:集合A={x∈R│x2-1=0}的特征是X2-1=0

    數(shù)學(xué)知識點歸納總結(jié)最新2

      不等式這部分知識,滲透在中學(xué)數(shù)學(xué)各個分支中,有著十分廣泛的應(yīng)用。因此不等式應(yīng)用問題體現(xiàn)了一定的綜合性、靈活多樣性,對數(shù)學(xué)各部分知識融會貫通,起到了很好的促進作用。在解決問題時,要依據(jù)題設(shè)與結(jié)論的結(jié)構(gòu)特點、內(nèi)在聯(lián)系、選擇適當(dāng)?shù)慕鉀Q方案,最終歸結(jié)為不等式的求解或證明。不等式的應(yīng)用范圍十分廣泛,它始終貫串在整個中學(xué)數(shù)學(xué)之中。

      諸如集合問題,方程(組)的解的討論,函數(shù)單調(diào)性的研究,函數(shù)定義域的確定,三角、數(shù)列、復(fù)數(shù)、立體幾何、解析幾何中的值、最小值問題,無一不與不等式有著密切的聯(lián)系,許多問題,最終都可歸結(jié)為不等式的求解或證明。

      知識整合

      1、解不等式的核心問題是不等式的同解變形,不等式的性質(zhì)則是不等式變形的理論依據(jù),方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解法密切相關(guān),要善于把它們有機地聯(lián)系起來,互相轉(zhuǎn)化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較復(fù)雜的不等式化歸為較簡單的或基本不等式,通過構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對含有參數(shù)的.不等式,運用圖解法可以使得分類標(biāo)準(zhǔn)明晰。

      2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎(chǔ),利用不等式的性質(zhì)及函數(shù)的單調(diào)性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數(shù)形結(jié)合是解不等式的常用方法。方程的根、函數(shù)的性質(zhì)和圖象都與不等式的解密切相關(guān),要善于把它們有機地聯(lián)系起來,相互轉(zhuǎn)化和相互變用。

      3、在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較復(fù)雜的不等式化歸為較簡單的或基本不等式,通過構(gòu)造函數(shù),將不等式的解化歸為直觀、形象的圖象關(guān)系,對含有參數(shù)的不等式,運用圖解法,可以使分類標(biāo)準(zhǔn)更加明晰。

      4、證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。

    數(shù)學(xué)知識點歸納總結(jié)最新3

      集合的有關(guān)概念

      1)集合(集):某些指定的對象集在一起就成為一個集合(集)、其中每一個對象叫元素

      注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

      ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

      ③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

      2)集合的表示方法:常用的'有列舉法、描述法和圖文法

      3)集合的分類:有限集,無限集,空集。

      4)常用數(shù)集:N,Z,Q,R,N

      子集、交集、并集、補集、空集、全集等概念

      1)子集:若對x∈A都有x∈B,則AB(或AB);

      2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

      3)交集:A∩B={x|x∈A且x∈B}

      4)并集:A∪B={x|x∈A或x∈B}

      5)補集:CUA={x|xA但x∈U}

      注意:A,若A≠?,則?A;

      若且,則A=B(等集)

      集合與元素

      掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。

      子集的幾個等價關(guān)系

      ①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

      ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

      交、并集運算的性質(zhì)

      ①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

      ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

      有限子集的個數(shù):

      設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

      練習(xí)題:

      已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關(guān)系()

      A)M=NPB)MN=PC)MNPD)NPM

      分析一:從判斷元素的共性與區(qū)別入手。

      解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}

      對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

    數(shù)學(xué)知識點歸納總結(jié)最新4

      1、等差數(shù)列的定義

      如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

      2、等差數(shù)列的通項公式

      若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d、

      3、等差中項

      如果A=(a+b)/2,那么A叫做a與b的等差中項。

      4、等差數(shù)列的常用性質(zhì)

      (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_)、

      (2)若{an}為等差數(shù)列,且m+n=p+q,則am+an=ap+aq(m,n,p,q∈N_)、

      (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列。

      (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列。

      (5)S2n-1=(2n-1)an、

      (6)若n為偶數(shù),則S偶-S奇=nd/2;

      若n為奇數(shù),則S奇-S偶=a中(中間項)、

      注意:

      一個推導(dǎo)

      利用倒序相加法推導(dǎo)等差數(shù)列的.前n項和公式:

      Sn=a1+a2+a3+…+an,①

      Sn=an+an-1+…+a1,②

      ①+②得:Sn=n(a1+an)/2

      兩個技巧

      已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元。

      (1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-2d,a-d,a,a+d,a+2d,…、

      (2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進行對稱設(shè)元。

      四種方法

      等差數(shù)列的判斷方法

      (1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

      (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

      (3)通項公式法:驗證an=pn+q;

      (4)前n項和公式法:驗證Sn=An2+Bn、

      注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列。

    數(shù)學(xué)知識點歸納總結(jié)最新5

      內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

      復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細證明它,還須將那定義抓。

      指數(shù)與對數(shù)函數(shù),初中學(xué)習(xí)方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

      函數(shù)定義域好求。分母不能等于0,偶次方根須非負,零和負數(shù)無對數(shù);

      正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。

      兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;

      求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的.值域。

      冪函數(shù)性質(zhì)易記,指數(shù)化既約分數(shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負。

      形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

      自變量x的取值范圍是不等于0的一切實數(shù)。

      反比例函數(shù)圖像性質(zhì):

      反比例函數(shù)的圖像為雙曲線。

      由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

      另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,高中地理,這點、兩個垂足及原點所圍成的矩形面積是定值,為?k?。

      如圖,上面給出了k分別為正和負(2和-2)時的函數(shù)圖像。

      當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

      當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

      反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

      知識點:

      1、過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為k。

      2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

    數(shù)學(xué)知識點歸納總結(jié)最新6

      1、集合的含義

      2、集合的中元素的三個特性:

      (1)元素的確定性如:世界上最高的山

      (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

      (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

      3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

      (1)用拉丁字母表示集合:A={我校的.籃球隊員},B={1,2,3,4,5}

      (2)集合的表示方法:列舉法與描述法。

      注意:常用數(shù)集及其記法:

      非負整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R

      1)列舉法:{a,b,c……}

      2)描述法:將集合中的元素的公共屬性描述出來,寫在大

      括號內(nèi)表示集合的方法。{x∈R|x-3>2},{x|x-3>2}

      3)語言描述法:例:{不是直角三角形的三角形}

      4)Venn圖:

      4、集合的分類:

      (1)有限集含有有限個元素的集合

      (2)無限集含有無限個元素的集合

      (3)空集不含任何元素的集合例:{x|x2=-5}

      2、高一數(shù)學(xué)知識點總結(jié):集合間的基本關(guān)系

      1、“包含”關(guān)系—子集

      注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

      反之:集合A不包含于集合B,或集合B不包含集合A,記作A?/B或B?/A

      2、“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)

      實例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”即:

      ①任何一個集合是它本身的子集。A?A

      ②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

      ③如果A?B,B?C,那么A?C

      ④如果A?B同時B?A那么A=B

      3、不含任何元素的集合叫做空集,記為Φ

      規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

      有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。

    【數(shù)學(xué)知識點歸納總結(jié)最新】相關(guān)文章:

    數(shù)學(xué)高二知識點總結(jié)歸納03-19

    小學(xué)數(shù)學(xué)知識點總結(jié)歸納09-27

    小升初的數(shù)學(xué)知識點總結(jié)歸納06-07

    高考數(shù)學(xué)知識點歸納總結(jié)10-27

    初中數(shù)學(xué)圓的知識點總結(jié)歸納08-26

    高三數(shù)學(xué)知識點歸納總結(jié)08-13

    小升初數(shù)學(xué)命題趨勢及知識點歸納總結(jié)03-08

    高一數(shù)學(xué)的知識點歸納總結(jié)07-11

    高二數(shù)學(xué)知識點歸納總結(jié)12-13

    麻豆精品国产免费观看| 91精品福利资源在线观看| 99久久精品免费看国产一区二区三区| 最近免费中文字幕大全免费版视频| 久久人人爽人人爽人人片aV中文| 中文字幕av影视精品不卡| jizjizjizjiz日本护士水多| 无码精品中文字幕a| 伦精品一区二区三区视频| 少妇真人直播app|