www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)

    時(shí)間:2024-08-30 09:13:25 知識(shí)點(diǎn)總結(jié) 我要投稿

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)

      總結(jié)是在某一特定時(shí)間段對(duì)學(xué)習(xí)和工作生活或其完成情況,包括取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)加以回顧和分析的書(shū)面材料,他能夠提升我們的書(shū)面表達(dá)能力,不如立即行動(dòng)起來(lái)寫(xiě)一份總結(jié)吧。總結(jié)你想好怎么寫(xiě)了嗎?下面是小編整理的高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié),供大家參考借鑒,希望可以幫助到有需要的朋友。

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)1

      集合的運(yùn)算

      運(yùn)算類(lèi)型交 集并 集補(bǔ) 集

      定義域 R定義域 R

      值域>0值域>0

      在R上單調(diào)遞增在R上單調(diào)遞減

      非奇非偶函數(shù)非奇非偶函數(shù)

      函數(shù)圖象都過(guò)定點(diǎn)(0,1)函數(shù)圖象都過(guò)定點(diǎn)(0,1)

      注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

      (1)在[a,b]上, 值域是 或 ;

      (2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;

      (3)對(duì)于指數(shù)函數(shù) ,總有 ;

      二、對(duì)數(shù)函數(shù)

      (一)對(duì)數(shù)

      1.對(duì)數(shù)的概念:

      一般地,如果 ,那么數(shù) 叫做以 為底 的對(duì)數(shù),記作: ( — 底數(shù), — 真數(shù), — 對(duì)數(shù)式)

      說(shuō)明:○1 注意底數(shù)的限制 ,且 ;

      ○2 ;

      ○3 注意對(duì)數(shù)的書(shū)寫(xiě)格式.

      兩個(gè)重要對(duì)數(shù):

      ○1 常用對(duì)數(shù):以10為底的對(duì)數(shù) ;

      ○2 自然對(duì)數(shù):以無(wú)理數(shù) 為底的對(duì)數(shù)的對(duì)數(shù) .

      指數(shù)式與對(duì)數(shù)式的互化

      冪值 真數(shù)

      = N = b

      底數(shù)

      指數(shù) 對(duì)數(shù)

      (二)對(duì)數(shù)的運(yùn)算性質(zhì)

      如果 ,且 , , ,那么:

      ○1 + ;

      ○2 - ;

      ○3 .

      注意:換底公式: ( ,且 ; ,且 ; ).

      利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .

      (3)、重要的公式 ①、負(fù)數(shù)與零沒(méi)有對(duì)數(shù); ②、 , ③、對(duì)數(shù)恒等式

      (二)對(duì)數(shù)函數(shù)

      1、對(duì)數(shù)函數(shù)的概念:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).

      注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類(lèi)似,都是形式定義,注意辨別。如: , 都不是對(duì)數(shù)函數(shù),而只能稱(chēng)其為對(duì)數(shù)型函數(shù).

      ○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .

      2、對(duì)數(shù)函數(shù)的性質(zhì):

      a>100時(shí),開(kāi)口方向向上,a0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a1,且∈_.

      當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand).

      當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

      注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),2.分?jǐn)?shù)指數(shù)冪

      正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

      0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

      指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

      3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

      (二)指數(shù)函數(shù)及其性質(zhì)

      1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

      注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

      2、指數(shù)函數(shù)的圖象和性質(zhì)

      【函數(shù)的`應(yīng)用】

      1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

      2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

      方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

      3、函數(shù)零點(diǎn)的求法:

      求函數(shù)的零點(diǎn):

      1(代數(shù)法)求方程的實(shí)數(shù)根;

      2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).

      4、二次函數(shù)的零點(diǎn):

      二次函數(shù).

      1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

      2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

      3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)2

      一、直線(xiàn)與方程

      (1)直線(xiàn)的傾斜角

      定義:x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當(dāng)直線(xiàn)與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線(xiàn)的斜率

      ①定義:傾斜角不是90°的直線(xiàn),它的傾斜角的正切叫做這條直線(xiàn)的斜率。直線(xiàn)的斜率常用k表示。即ktan。斜率反映直線(xiàn)與軸的傾斜程度。

      當(dāng)0,90時(shí),k0;當(dāng)90,180時(shí),k0;當(dāng)90時(shí),k不存在。

      yy1(x1x2)②過(guò)兩點(diǎn)的直線(xiàn)的斜率公式:k2x2x1注意下面四點(diǎn):(1)當(dāng)x1x2時(shí),公式右邊無(wú)意義,直線(xiàn)的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線(xiàn)上兩點(diǎn)的坐標(biāo)直接求得;

      (4)求直線(xiàn)的傾斜角可由直線(xiàn)上兩點(diǎn)的坐標(biāo)先求斜率得到。(3)直線(xiàn)方程

      ①點(diǎn)斜式:yy1k(xx1)直線(xiàn)斜率k,且過(guò)點(diǎn)x1,y1

      注意:當(dāng)直線(xiàn)的斜率為0°時(shí),k=0,直線(xiàn)的方程是y=y1。

      當(dāng)直線(xiàn)的斜率為90°時(shí),直線(xiàn)的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。

      ②斜截式:ykxb,直線(xiàn)斜率為k,直線(xiàn)在y軸上的截距為b③兩點(diǎn)式:④截矩式:

      yy1y2y1xayxx1x2x1(x1x2,y1y2)直線(xiàn)兩點(diǎn)x1,y1,x2,y2

      1b其中直線(xiàn)l與x軸交于點(diǎn)(a,0),與y軸交于點(diǎn)(0,b),即l與x軸、y軸的截距分別為a,b。

      ⑤一般式:AxByC0(A,B不全為0)

      1各式的適用范圍○2特殊的方程如:注意:○

      平行于x軸的直線(xiàn):yb(b為常數(shù));平行于y軸的直線(xiàn):xa(a為常數(shù));(5)直線(xiàn)系方程:即具有某一共同性質(zhì)的直線(xiàn)(一)平行直線(xiàn)系

      平行于已知直線(xiàn)A0xB0yC00(A0,B0是不全為0的常數(shù))的直線(xiàn)系:

      A0xB0yC0(C為常數(shù))

      (二)過(guò)定點(diǎn)的直線(xiàn)系

      ()斜率為k的直線(xiàn)系:yy0kxx0,直線(xiàn)過(guò)定點(diǎn)x0,y0;

      ()過(guò)兩條直線(xiàn)l1:A1xB1yC10,l2:A2xB2yC20的交點(diǎn)的直線(xiàn)系方程為

      ,其中直線(xiàn)l2不在直線(xiàn)系中。A1xB1yC1A2xB2yC20(為參數(shù))(6)兩直線(xiàn)平行與垂直

      當(dāng)l1:yk1xb1,l2:yk2xb2時(shí),l1//l2k1k2,b1b2;l1l2k1k21

      注意:利用斜率判斷直線(xiàn)的平行與垂直時(shí),要注意斜率的存在與否。(7)兩條直線(xiàn)的交點(diǎn)

      l1:A1xB1yC10l2:A2xB2yC20相交交點(diǎn)坐標(biāo)即方程組A1xB1yC10的一組解。

      A2xB2yC20方程組無(wú)解l1//l2;方程組有無(wú)數(shù)解l1與l2重合(8)兩點(diǎn)間距離公式:設(shè)A(x1,y1),B是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),(x2,y2)則|AB|(x2x1)2(y2y1)2

      (9)點(diǎn)到直線(xiàn)距離公式:一點(diǎn)Px0,y0到直線(xiàn)l1:AxByC0的距離d(10)兩平行直線(xiàn)距離公式

      在任一直線(xiàn)上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線(xiàn)的距離進(jìn)行求解。

      Ax0By0CAB22

      二、圓的方程

      1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的

      半徑。

      2、圓的方程

      (1)標(biāo)準(zhǔn)方程xaybr2,圓心a,b,半徑為r;

      22(2)一般方程x2y2DxEyF0當(dāng)DE2224F0時(shí),方程表示圓,此時(shí)圓心為22D2,1E,半徑為r22D2E24F

      當(dāng)DE4F0時(shí),表示一個(gè)點(diǎn);當(dāng)DE4F0時(shí),方程不表示任何圖

      形。

      (3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

      另外要注意多利用圓的幾何性質(zhì):如弦的中垂線(xiàn)必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。3、直線(xiàn)與圓的位置關(guān)系:

      直線(xiàn)與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

      (1)設(shè)直線(xiàn)l:AxByC0,圓C:xa2yb2r2,圓心Ca,b到l的距離為

      dAaBbCAB222,則有drl與C相離;drl與C相切;drl與C相交

      22(2)設(shè)直線(xiàn)l:AxByC0,圓C:xaybr2,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令其中的判別式為,則有

      0l與C相離;0l與C相切;0l與C相交

      2注:如果圓心的位置在原點(diǎn),可使用公式xx0yy0r去解直線(xiàn)與圓相切的問(wèn)題,其中x0,y0表示切點(diǎn)坐標(biāo),r表示半徑。

      (3)過(guò)圓上一點(diǎn)的切線(xiàn)方程:

      22

      ①圓x2+y2=r,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為xx0yy0r(課本命題).

      2222

      ②圓(x-a)+(y-b)=r,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線(xiàn)方程為(x0-a)(x-a)+(y0-b)(y-b)=r(課本命題的推廣).

      4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。設(shè)圓C1:xa12yb12r2,C2:xa22yb22R2兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。當(dāng)dRr時(shí)兩圓外離,此時(shí)有公切線(xiàn)四條;

      當(dāng)dRr時(shí)兩圓外切,連心線(xiàn)過(guò)切點(diǎn),有外公切線(xiàn)兩條,內(nèi)公切線(xiàn)一條;當(dāng)RrdRr時(shí)兩圓相交,連心線(xiàn)垂直平分公共弦,有兩條外公切線(xiàn);當(dāng)dRr時(shí),兩圓內(nèi)切,連心線(xiàn)經(jīng)過(guò)切點(diǎn),只有一條公切線(xiàn);當(dāng)dRr時(shí),兩圓內(nèi)含;當(dāng)d0時(shí),為同心圓。

      三、立體幾何初步

      1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      (1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共

      邊都互相平行,由這些面所圍成的幾何體。

      分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

      表示:用各頂點(diǎn)字母,如五棱柱ABCDEA"B"C"D"E"或用對(duì)角線(xiàn)的端點(diǎn)字母,如五棱柱

      "AD

      幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且

      相等;平行于底面的截面是與底面全等的多邊形。

      (2)棱錐

      定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

      分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

      表示:用各頂點(diǎn)字母,如五棱錐PABCDE

      幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到

      截面距離與高的比的平方。

      (3)棱臺(tái):定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

      """""表示:用各頂點(diǎn)字母,如五棱臺(tái)PABCDE

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線(xiàn)為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的'幾何體

      幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖

      是一個(gè)矩形。

      (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何

      體

      幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。(6)圓臺(tái):定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線(xiàn)交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線(xiàn)為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖

      定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

      注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

      側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

      3、空間幾何體的直觀圖斜二測(cè)畫(huà)法

      斜二測(cè)畫(huà)法特點(diǎn):①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(zhǎng)度不變;

      ②原來(lái)與y軸平行的線(xiàn)段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

      4、柱體、錐體、臺(tái)體的表面積與體積

      (1)幾何體的表面積為幾何體各個(gè)面的面積的和。

      (2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,h為斜高,l為母線(xiàn))

      S直棱柱側(cè)面積S正棱臺(tái)側(cè)面積12chS圓柱側(cè)2rhS正棱錐側(cè)面積(c1c2)h"S圓臺(tái)側(cè)面積(rR)l

      12ch"S圓錐側(cè)面積rl

      S圓柱表2rrlS圓錐表rrlS圓臺(tái)表r2rlRlR2

      (3)柱體、錐體、臺(tái)體的體積公式V柱ShV圓柱ShV臺(tái)13(S""21rhV錐ShV圓錐1r2h

      33SSS)hV圓臺(tái)13(S"SSS)h"13(rrRR)h

      22

      (4)球體的表面積和體積公式:V球4、空間點(diǎn)、直線(xiàn)、平面的位置關(guān)系

      球面=4R2

      (1)平面

      ①平面的概念:A.描述性說(shuō)明;B.平面是無(wú)限伸展的;

      ②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫(xiě)在一個(gè)銳角內(nèi));

      也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面BC。

      ③點(diǎn)與平面的關(guān)系:點(diǎn)A在平面內(nèi),記作A;點(diǎn)A不在平面內(nèi),記作A點(diǎn)與直線(xiàn)的關(guān)系:點(diǎn)A的直線(xiàn)l上,記作:A∈l;點(diǎn)A在直線(xiàn)l外,記作Al;

      直線(xiàn)與平面的關(guān)系:直線(xiàn)l在平面α內(nèi),記作lα;直線(xiàn)l不在平面α內(nèi),記作lα。(2)公理1:如果一條直線(xiàn)的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線(xiàn)是所有的點(diǎn)都在這個(gè)平面內(nèi)。

      (即直線(xiàn)在平面內(nèi),或者平面經(jīng)過(guò)直線(xiàn))

      應(yīng)用:檢驗(yàn)桌面是否平;判斷直線(xiàn)是否在平面內(nèi)

      用符號(hào)語(yǔ)言表示公理1:Al,Bl,A,Bl(3)公理2:經(jīng)過(guò)不在同一條直線(xiàn)上的三點(diǎn),有且只有一個(gè)平面。

      推論:一直線(xiàn)和直線(xiàn)外一點(diǎn)確定一平面;兩相交直線(xiàn)確定一平面;兩平行直線(xiàn)確定一平面。

      公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)(4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線(xiàn)

      符號(hào):平面α和β相交,交線(xiàn)是a,記作α∩β=a。

      符號(hào)語(yǔ)言:PABABl,Pl公理3的作用:

      ①它是判定兩個(gè)平面相交的方法。

      ②它說(shuō)明兩個(gè)平面的交線(xiàn)與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線(xiàn)必過(guò)公共點(diǎn)。③它可以判斷點(diǎn)在直線(xiàn)上,即證若干個(gè)點(diǎn)共線(xiàn)的重要依據(jù)。(5)公理4:平行于同一條直線(xiàn)的兩條直線(xiàn)互相平行(6)空間直線(xiàn)與直線(xiàn)之間的位置關(guān)系

      ①異面直線(xiàn)定義:不同在任何一個(gè)平面內(nèi)的兩條直線(xiàn)②異面直線(xiàn)性質(zhì):既不平行,又不相交。

      ③異面直線(xiàn)判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線(xiàn)與平面內(nèi)不過(guò)該店的直線(xiàn)是異面直線(xiàn)④異面直線(xiàn)所成角:直線(xiàn)a、b是異面直線(xiàn),經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線(xiàn)a’∥a,b’∥b,則把直線(xiàn)a’和b’所成的銳角(或直角)叫做異面直線(xiàn)a和b所成的角。兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直。說(shuō)明:(1)判定空間直線(xiàn)是異面直線(xiàn)方法:①根據(jù)異面直線(xiàn)的定義;②異面直線(xiàn)的判定定理(2)在異面直線(xiàn)所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。②求異面直線(xiàn)所成角步驟:

      A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來(lái)求角

      (7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。(8)空間直線(xiàn)與平面之間的位置關(guān)系

      直線(xiàn)在平面內(nèi)有無(wú)數(shù)個(gè)公共點(diǎn).

      三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa∥α

      (9)平面與平面之間的位置關(guān)系:平行沒(méi)有公共點(diǎn);α∥β

      相交有一條公共直線(xiàn)。α∩β=b

      5、空間中的平行問(wèn)題

      (1)直線(xiàn)與平面平行的判定及其性質(zhì)

      線(xiàn)面平行的判定定理:平面外一條直線(xiàn)與此平面內(nèi)一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。

      線(xiàn)線(xiàn)平行線(xiàn)面平行

      線(xiàn)面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,

      那么這條直線(xiàn)和交線(xiàn)平行。線(xiàn)面平行線(xiàn)線(xiàn)平行

      (1)平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理

      (2)如果一個(gè)平面內(nèi)的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行

      (線(xiàn)面平行→面面平行),

      (2)如果在兩個(gè)平面內(nèi),各有兩組相交直線(xiàn)對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線(xiàn)線(xiàn)平行→面面平行),

      (3)垂直于同一條直線(xiàn)的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理

      (1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線(xiàn)與另一個(gè)平面平行。(面面平行→線(xiàn)面平行)(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線(xiàn)平行。(面面平行→線(xiàn)線(xiàn)平行)7、空間中的垂直問(wèn)題

      (1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義①兩條異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。②線(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內(nèi)的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。

      ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。(2)垂直關(guān)系的判定和性質(zhì)定理①線(xiàn)面垂直判定定理和性質(zhì)定理判定定理:如果一條直線(xiàn)和一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。②面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。

      9、空間角問(wèn)題

      (1)直線(xiàn)與直線(xiàn)所成的角

      ①兩平行直線(xiàn)所成的角:規(guī)定為0。

      ②兩條相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角。③兩條異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn)a,b,形成兩條相交直線(xiàn),這兩條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角。

      (2)直線(xiàn)和平面所成的角

      ①平面的平行線(xiàn)與平面所成的角:規(guī)定為0。②平面的垂線(xiàn)與平面所成的角:規(guī)定為90。③平面的斜線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內(nèi)的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角。

      求斜線(xiàn)與平面所成角的思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計(jì)算”。

      第6頁(yè)

      在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線(xiàn)上一點(diǎn)到面的垂線(xiàn),在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線(xiàn)上一點(diǎn)到面的垂線(xiàn);(2)過(guò)斜線(xiàn)上的一點(diǎn)或過(guò)斜線(xiàn)的平面與已知面垂直,由面面垂直性質(zhì)易得垂線(xiàn)。(3)二面角和二面角的平面角①二面角的定義:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線(xiàn)叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射.....線(xiàn),這兩條射線(xiàn)所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。

      兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角④求二面角的方法

      定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線(xiàn)得到平面角垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線(xiàn)時(shí),過(guò)兩垂線(xiàn)作平面與兩個(gè)面的交線(xiàn)所成的角為二面角的平面角7、空間直角坐標(biāo)系

      (1)定義:如圖,OBCDD,A,B,C,是單位正方體.以A為原點(diǎn),分別以O(shè)D,OA,,OB的方向?yàn)檎较颍⑷龡l數(shù)軸x軸.y軸.z軸。這時(shí)建立了一個(gè)空間直角坐標(biāo)系Oxyz.

      1)O叫做坐標(biāo)原點(diǎn)2)x軸,y軸,z軸叫做坐標(biāo)軸.3)過(guò)每?jī)蓚(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。

      (2)右手表示法:令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)閤軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

      (3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)M的坐標(biāo)可以用有序?qū)崝?shù)組(x,y,z)來(lái)表示,有序?qū)崝?shù)組(x,y,z)叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記作M(x,y,z)(x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo))

      (4)空間兩點(diǎn)距離坐標(biāo)公式:d(x2x1)2(y2y1)2(z2z1)2

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)3

      不等式

      不等關(guān)系

      了解現(xiàn)實(shí)世界和日常生活中的不等關(guān)系,了解不等式(組)的實(shí)際背景.

      (2)一元二次不等式

      ①會(huì)從實(shí)際情境中抽象出一元二次不等式模型.

      ②通過(guò)函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

      ③會(huì)解一元二次不等式,對(duì)給定的一元二次不等式,會(huì)設(shè)計(jì)求解的程序框圖.

      (3)二元一次不等式組與簡(jiǎn)單線(xiàn)性規(guī)劃問(wèn)題

      ①會(huì)從實(shí)際情境中抽象出二元一次不等式組.

      ②了解二元一次不等式的'幾何意義,能用平面區(qū)域表示二元一次不等式組.

      ③會(huì)從實(shí)際情境中抽象出一些簡(jiǎn)單的二元線(xiàn)性規(guī)劃問(wèn)題,并能加以解決.

      (4)基本不等式:

      ①了解基本不等式的證明過(guò)程.

      ②會(huì)用基本不等式解決簡(jiǎn)單的(小)值問(wèn)題圓的輔助線(xiàn)一般為連圓心與切線(xiàn)或者連圓心與弦中點(diǎn)

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)4

      知識(shí)點(diǎn)1

      一、集合有關(guān)概念

      1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

      2、集合的中元素的三個(gè)特性:

      1、元素的確定性;

      2、元素的互異性;

      3、元素的無(wú)序性

      說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

      (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

      (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

      (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

      3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

      1、用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

      2、集合的表示方法:列舉法與描述法。

      注意啊:常用數(shù)集及其記法:

      非負(fù)整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集N或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R

      關(guān)于“屬于”的概念

      集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A

      列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上。

      描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

      ①語(yǔ)言描述法:例:{不是直角三角形的三角形}

      ②數(shù)學(xué)式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

      4、集合的分類(lèi):

      1、有限集含有有限個(gè)元素的集合

      2、無(wú)限集含有無(wú)限個(gè)元素的集合

      3、空集不含任何元素的集合例:{x|x2=—5}

      知識(shí)點(diǎn)2

      I、定義與定義表達(dá)式

      一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大、)

      則稱(chēng)y為x的二次函數(shù)。

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      II、二次函數(shù)的三種表達(dá)式

      一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(x—h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

      交點(diǎn)式:y=a(x—x?)(x—x?)[僅限于與x軸有交點(diǎn)A(x?,0)和B(x?,0)的拋物線(xiàn)]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

      III、二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。

      IV、拋物線(xiàn)的性質(zhì)

      1、拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)x=—b/2a。對(duì)稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

      特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)

      2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為

      P(—b/2a,(4ac—b^2)/4a)

      當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2—4ac=0時(shí),P在x軸上。

      3、二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

      當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。

      |a|越大,則拋物線(xiàn)的開(kāi)口越小。

      知識(shí)點(diǎn)3

      1、拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)

      x=—b/2a。

      對(duì)稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

      特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)

      2、拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為

      P(—b/2a,(4ac—b’2)/4a)

      當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)Δ=b’2—4ac=0時(shí),P在x軸上。

      3、二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

      當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。

      |a|越大,則拋物線(xiàn)的開(kāi)口越小。

      4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;

      當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。

      5、常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。

      拋物線(xiàn)與y軸交于(0,c)

      6、拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)

      Δ=b’2—4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

      Δ=b’2—4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

      Δ=b’2—4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=—b±√b’2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

      知識(shí)點(diǎn)4

      對(duì)數(shù)函數(shù)

      對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

      右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

      可以看到對(duì)數(shù)函數(shù)的.圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線(xiàn)y=x的對(duì)稱(chēng)圖形,因?yàn)樗鼈兓榉春瘮?shù)。

      (1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

      (2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

      (3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。

      (4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

      (5)顯然對(duì)數(shù)函數(shù)。

      知識(shí)點(diǎn)5

      方程的根與函數(shù)的零點(diǎn)

      1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

      2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)。

      3、函數(shù)零點(diǎn)的求法:

      (1)(代數(shù)法)求方程的實(shí)數(shù)根;

      (2)(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。

      4、二次函數(shù)的零點(diǎn):

      (1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。

      (2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。

      (3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)5

      空間中的平行關(guān)系

      1、直線(xiàn)與平面平行(核心)

      定義:直線(xiàn)和平面沒(méi)有公共點(diǎn)

      判定:不在一個(gè)平面內(nèi)的一條直線(xiàn)和平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)平行于此平面(由線(xiàn)線(xiàn)平行得出)

      性質(zhì):一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,則這條直線(xiàn)就和兩平面的交線(xiàn)平行

      2、平面與平面平行

      定義:兩個(gè)平面沒(méi)有公共點(diǎn)

      判定:一個(gè)平面內(nèi)有兩條相交直線(xiàn)平行于另一個(gè)平面,則這兩個(gè)平面平行

      性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線(xiàn)平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行。

      3、常利用三角形中位線(xiàn)、平行四邊形對(duì)邊、已知直線(xiàn)作一平面找其交線(xiàn)

      空間中的垂直問(wèn)題

      (1)線(xiàn)線(xiàn)、面面、線(xiàn)面垂直的定義

      ①兩條異面直線(xiàn)的垂直:如果兩條異面直線(xiàn)所成的角是直角,就說(shuō)這兩條異面直線(xiàn)互相垂直。

      ②線(xiàn)面垂直:如果一條直線(xiàn)和一個(gè)平面內(nèi)的任何一條直線(xiàn)垂直,就說(shuō)這條直線(xiàn)和這個(gè)平面垂直。

      ③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。

      (2)垂直關(guān)系的判定和性質(zhì)定理

      ①線(xiàn)面垂直判定定理和性質(zhì)定理

      判定定理:如果一條直線(xiàn)和一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直這個(gè)平面。

      性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。

      ②面面垂直的判定定理和性質(zhì)定理

      判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直。

      性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。

      函數(shù)的奇偶性

      (1)若f(x)是偶函數(shù),那么f(x)=f(-x);

      (2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

      (3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(x)±f(-x)=0或(f(x)≠0);

      (4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡(jiǎn),再判斷其奇偶性;

      (5)奇函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱(chēng)的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

      復(fù)合函數(shù)的有關(guān)問(wèn)題

      (1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域?yàn)閇a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時(shí),求g(x)的值域(即f(x)的定義域);研究函數(shù)的`問(wèn)題一定要注意定義域優(yōu)先的原則。

      (2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

      函數(shù)圖像(或方程曲線(xiàn)的對(duì)稱(chēng)性)

      (1)證明函數(shù)圖像的對(duì)稱(chēng)性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在圖像上;

      (2)證明圖像C1與C2的對(duì)稱(chēng)性,即證明C1上任意點(diǎn)關(guān)于對(duì)稱(chēng)中心(對(duì)稱(chēng)軸)的對(duì)稱(chēng)點(diǎn)仍在C2上,反之亦然;

      (3)曲線(xiàn)C1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對(duì)稱(chēng)曲線(xiàn)C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

      (4)曲線(xiàn)C1:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱(chēng)曲線(xiàn)C2方程為:f(2a-x,2b-y)=0;

      (5)若函數(shù)y=f(x)對(duì)x∈R時(shí),f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線(xiàn)x=a對(duì)稱(chēng),高中數(shù)學(xué);

      (6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線(xiàn)x=對(duì)稱(chēng)。

      空間角問(wèn)題

      (1)直線(xiàn)與直線(xiàn)所成的角

      ①兩平行直線(xiàn)所成的角:規(guī)定為0。

      ②兩條相交直線(xiàn)所成的角:兩條直線(xiàn)相交其中不大于直角的角,叫這兩條直線(xiàn)所成的角。③兩條異面直線(xiàn)所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線(xiàn)a,b平行的直線(xiàn)a,b,形成兩條相交直線(xiàn),這兩條相交直線(xiàn)所成的不大于直角的角叫做兩條異面直線(xiàn)所成的角。

      (2)直線(xiàn)和平面所成的角

      ①平面的平行線(xiàn)與平面所成的角:規(guī)定為0。

      ②平面的垂線(xiàn)與平面所成的角:規(guī)定為90。

      ③平面的斜線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在平面內(nèi)的射影所成的銳角,叫做這條直線(xiàn)和這個(gè)平面所成的角。

      求斜線(xiàn)與平面所成角的思路類(lèi)似于求異面直線(xiàn)所成角:“一作,二證,三計(jì)算”。

      空間直線(xiàn)與直線(xiàn)之間的位置關(guān)系

      ① 異面直線(xiàn)定義:不同在任何一個(gè)平面內(nèi)的兩條直線(xiàn)

      ② 異面直線(xiàn)性質(zhì):既不平行,又不相交.

      ③ 異面直線(xiàn)判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線(xiàn)與平面內(nèi)不過(guò)該店的直線(xiàn)是異面直線(xiàn)

      ④ 異面直線(xiàn)所成角:作平行,令兩線(xiàn)相交,所得銳角或直角,即所成角.兩條異面直線(xiàn)所成角的范圍是(0°,90°],若兩條異面直線(xiàn)所成的角是直角,我們就說(shuō)這兩條異面直線(xiàn)互相垂直.

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)6

      高一數(shù)學(xué)必修一知識(shí)點(diǎn)

      指數(shù)函數(shù)

      (一)指數(shù)與指數(shù)冪的運(yùn)算

      1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

      當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand).

      當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

      注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

      2.分?jǐn)?shù)指數(shù)冪

      正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

      0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

      指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

      3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

      (二)指數(shù)函數(shù)及其性質(zhì)

      1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽.

      注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

      2、指數(shù)函數(shù)的圖象和性質(zhì)

      高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

      空間幾何體表面積體積公式:

      1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

      2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

      3、a-邊長(zhǎng),S=6a2,V=a3

      4、長(zhǎng)方體a-長(zhǎng),b-寬,c-高S=2(ab+ac+bc)V=abc

      5、棱柱S-h-高V=Sh

      6、棱錐S-h-高V=Sh/3

      7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

      8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

      9、圓柱r-底半徑,h-高,C—底面周長(zhǎng)S底—底面積,S側(cè)—,S表—表面積C=2πrS底=πr2,S側(cè)=Ch,S表=Ch+2S底,V=S底h=πr2h

      10、空心圓柱R-外圓半徑,r-內(nèi)圓半徑h-高V=πh(R^2-r^2)

      11、r-底半徑h-高V=πr^2h/3

      12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

      14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

      15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

      16、圓環(huán)體R-環(huán)體半徑D-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑V=2π2Rr2=π2Dd2/4

      17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線(xiàn)是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線(xiàn)是拋物線(xiàn)形)

      人教版高一數(shù)學(xué)必修一知識(shí)點(diǎn)梳理

      1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

      (1)棱柱:

      定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

      分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

      表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線(xiàn)的端點(diǎn)字母,如五棱柱。

      幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

      (2)棱錐

      定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的`幾何體。

      分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

      表示:用各頂點(diǎn)字母,如五棱錐

      幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

      (3)棱臺(tái):

      定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

      分類(lèi):以底面多邊形的邊數(shù)作為分類(lèi)的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

      表示:用各頂點(diǎn)字母,如五棱臺(tái)

      幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

      (4)圓柱:

      定義:以矩形的一邊所在的直線(xiàn)為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

      幾何特征:①底面是全等的圓;②母線(xiàn)與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開(kāi)圖是一個(gè)矩形。

      (5)圓錐:

      定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

      幾何特征:①底面是一個(gè)圓;②母線(xiàn)交于圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)扇形。

      (6)圓臺(tái):

      定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

      幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線(xiàn)交于原圓錐的頂點(diǎn);③側(cè)面展開(kāi)圖是一個(gè)弓形。

      (7)球體:

      定義:以半圓的直徑所在直線(xiàn)為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

      幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

      2、空間幾何體的三視圖

      定義三視圖:正視圖(光線(xiàn)從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

      注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;

      俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;

      側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

      3、空間幾何體的直觀圖——斜二測(cè)畫(huà)法

      斜二測(cè)畫(huà)法特點(diǎn):

      ①原來(lái)與x軸平行的線(xiàn)段仍然與x平行且長(zhǎng)度不變;

      ②原來(lái)與y軸平行的線(xiàn)段仍然與y平行,長(zhǎng)度為原來(lái)的一半。

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)7

      棱錐

      棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

      棱錐的的性質(zhì):

      (1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

      (2)平行于底面的.截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

      正棱錐

      正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

      正棱錐的性質(zhì):

      (1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

      (3)多個(gè)特殊的直角三角形

      esp:

      a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

      b、四面體中有三對(duì)異面直線(xiàn),若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)8

      空間兩條直線(xiàn)只有三種位置關(guān)系:平行、相交、異面

      1、按是否共面可分為兩類(lèi):

      1共面:平行、相交

      2異面:

      異面直線(xiàn)的定義:不同在任何一個(gè)平面內(nèi)的兩條直線(xiàn)或既不平行也不相交。

      異面直線(xiàn)判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線(xiàn),與平面內(nèi)不經(jīng)過(guò)該點(diǎn)的直線(xiàn)是異面直線(xiàn)。

      兩異面直線(xiàn)所成的角:范圍為0°,90°esp.空間向量法

      兩異面直線(xiàn)間距離:公垂線(xiàn)段有且只有一條esp.空間向量法

      2、若從有無(wú)公共點(diǎn)的角度看可分為兩類(lèi):

      1有且僅有一個(gè)公共點(diǎn)——相交直線(xiàn);2沒(méi)有公共點(diǎn)——平行或異面

      直線(xiàn)和平面的位置關(guān)系:

      直線(xiàn)和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

      ①直線(xiàn)在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn)

      ②直線(xiàn)和平面相交——有且只有一個(gè)公共點(diǎn)

      直線(xiàn)與平面所成的角:平面的一條斜線(xiàn)和它在這個(gè)平面內(nèi)的射影所成的銳角。

      空間向量法找平面的法向量

      規(guī)定:a、直線(xiàn)與平面垂直時(shí),所成的角為直角,b、直線(xiàn)與平面平行或在平面內(nèi),所成的角為0°角

      由此得直線(xiàn)和平面所成角的取值范圍為[0°,90°]

      最小角定理:斜線(xiàn)與平面所成的角是斜線(xiàn)與該平面內(nèi)任一條直線(xiàn)所成角中的最小角

      三垂線(xiàn)定理及逆定理:如果平面內(nèi)的一條直線(xiàn),與這個(gè)平面的一條斜線(xiàn)的射影垂直,那么它也與這條斜線(xiàn)垂直

      直線(xiàn)和平面垂直

      直線(xiàn)和平面垂直的定義:如果一條直線(xiàn)a和一個(gè)平面內(nèi)的任意一條直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)a和平面互相垂直.直線(xiàn)a叫做平面的垂線(xiàn),平面叫做直線(xiàn)a的垂面。

      直線(xiàn)與平面垂直的判定定理:如果一條直線(xiàn)和一個(gè)平面內(nèi)的兩條相交直線(xiàn)都垂直,那么這條直線(xiàn)垂直于這個(gè)平面。

      直線(xiàn)與平面垂直的性質(zhì)定理:如果兩條直線(xiàn)同垂直于一個(gè)平面,那么這兩條直線(xiàn)平行。③直線(xiàn)和平面平行——沒(méi)有公共點(diǎn)

      直線(xiàn)和平面平行的定義:如果一條直線(xiàn)和一個(gè)平面沒(méi)有公共點(diǎn),那么我們就說(shuō)這條直線(xiàn)和這個(gè)平面平行。

      直線(xiàn)和平面平行的判定定理:如果平面外一條直線(xiàn)和這個(gè)平面內(nèi)的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行。

      直線(xiàn)和平面平行的性質(zhì)定理:如果一條直線(xiàn)和一個(gè)平面平行,經(jīng)過(guò)這條直線(xiàn)的平面和這個(gè)平面相交,那么這條直線(xiàn)和交線(xiàn)平行。

      多面體

      1、棱柱

      棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

      棱柱的性質(zhì)

      1側(cè)棱都相等,側(cè)面是平行四邊形

      2兩個(gè)底面與平行于底面的截面是全等的多邊形

      3過(guò)不相鄰的兩條側(cè)棱的截面對(duì)角面是平行四邊形

      2、棱錐

      棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐

      棱錐的性質(zhì):

      1側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

      2平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

      3、正棱錐

      正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

      正棱錐的性質(zhì):

      1各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的`等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

      3多個(gè)特殊的直角三角形

      a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

      b、四面體中有三對(duì)異面直線(xiàn),若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

      兩個(gè)平面的位置關(guān)系

      1兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)

      2兩個(gè)平面的位置關(guān)系:

      兩個(gè)平面平行-----沒(méi)有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線(xiàn)。

      a、平行

      兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

      兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線(xiàn)平行。b、相交

      二面角

      1半平面:平面內(nèi)的一條直線(xiàn)把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

      2二面角:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

      3二面角的棱:這一條直線(xiàn)叫做二面角的棱。

      4二面角的面:這兩個(gè)半平面叫做二面角的面。

      5二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫做二面角的平面角。

      6直二面角:平面角是直角的二面角叫做直二面角。

      兩平面垂直

      兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥

      兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直

      兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平

      二面角求法:直接法作出平面角、三垂線(xiàn)定理及逆定理、面積射影定理、空間向量之法向量法注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系。

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)9

      1、正弦定理:在C中,a、b、c分別為角、、C的對(duì)邊,R為C的外接圓的半徑,則有asinbsincsinC2R.

      2、正弦定理的變形公式:①a2Rsin,b2Rsin,c2RsinC;②sin④a2R,sinb2R,sinCabsinc2R;③a:b:csin:sin:sinC;csinCabcsinsinsinCsin.(正弦定理主要用來(lái)解決兩類(lèi)問(wèn)題:1、已知兩邊和其中一邊所對(duì)的角,求其余的量。2、已知兩角和一邊,求其余的量。)⑤對(duì)于已知兩邊和其中一邊所對(duì)的角的題型要注意解的情況。(一解、兩解、無(wú)解三中情況)如:在三角形ABC中,已知a、b、A(A為銳角)求B。具體的做法是:數(shù)形結(jié)合思想畫(huà)出圖:法一:把a(bǔ)擾著C點(diǎn)旋轉(zhuǎn),看所得軌跡以AD有無(wú)交點(diǎn):當(dāng)無(wú)交點(diǎn)則B無(wú)解、當(dāng)有一個(gè)交點(diǎn)則B有一解、當(dāng)有兩個(gè)交點(diǎn)則B有兩個(gè)解。法二:是算出CD=bsinA,看a的情況:當(dāng)a但不能到達(dá),在岸邊選取相距3千米的C、D兩點(diǎn),并測(cè)得∠ACB=75O,∠BCD=45O,∠ADC=30O,∠ADB=45(A、B、C、D在同一平面內(nèi)),求兩目標(biāo)A、B之間的距離。本題解答過(guò)程略附:三角形的五個(gè)“心”;重心:三角形三條中線(xiàn)交點(diǎn).外心:三角形三邊垂直平分線(xiàn)相交于一點(diǎn).內(nèi)心:三角形三內(nèi)角的平分線(xiàn)相交于一點(diǎn).垂心:三角形三邊上的高相交于一點(diǎn).

      7、數(shù)列:按照一定順序排列著的一列數(shù).

      8、數(shù)列的項(xiàng):數(shù)列中的每一個(gè)數(shù).

      9、有窮數(shù)列:項(xiàng)數(shù)有限的數(shù)列.

      10、無(wú)窮數(shù)列:項(xiàng)數(shù)無(wú)限的數(shù)列.

      11、遞增數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不小于它的前一項(xiàng)的數(shù)列(即:an+1>an).

      12、遞減數(shù)列:從第2項(xiàng)起,每一項(xiàng)都不大于它的前一項(xiàng)的數(shù)列(即:an+1④nana1d1;⑤danamnm.

      21、若an是等差數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等差數(shù)列,且2npq(n、p、q),則2anapaq.

      22、等差數(shù)列的前n項(xiàng)和的公式:①Snna1an2;②Snna1nn12d.③sna1a2an

      23、等差數(shù)列的前n項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為2nn,則S2nnanan1,且S偶S奇nd,S奇S偶anan1.S奇S偶nn1②若項(xiàng)數(shù)為2n1n,則S2n12n1an,且S奇S偶an,S偶n1an)(其中S奇nan,

      24、如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱(chēng)為等比數(shù)列,這個(gè)常數(shù)稱(chēng)為等比數(shù)列的公比.符號(hào)表示:an1anq(注:①等比數(shù)列中不會(huì)出現(xiàn)值為0的項(xiàng);②同號(hào)位上的值同號(hào))注:看數(shù)列是不是等比數(shù)列有以下四種方法: 2①anan1q(n2,q為常數(shù),且0)②anan1an1(n2,anan1an10)③ancqn(c,q為非零常數(shù)).④正數(shù)列{an}成等比的充要條件是數(shù)列{logxan}(x1)成等比數(shù)列.

      25、在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,則G稱(chēng)為a與b的等比中項(xiàng).若Gab,22則稱(chēng)G為a與b的等比中項(xiàng).(注:由Gab不能得出a,G,b成等比,由a,G,bGab)2n1

      26、若等比數(shù)列an的首項(xiàng)是a1,公比是q,則ana1q.

      27、通項(xiàng)公式的變形:①anamqnm;②a1anqn1;③qn1ana1;④qnmanam.

      28、若an是等比數(shù)列,且mnpq(m、n、p、q),則amanapaq;若an是等比數(shù)列,且2npq(n、p、q),則anapaq.na1q1

      29、等比數(shù)列an的前n項(xiàng)和的公式:①Sna1qnaaq.②sn1n1q11q1q2a1a2an

      30、對(duì)任意的數(shù)列{an}的前n項(xiàng)和Sn與通項(xiàng)an的關(guān)系:ans1a1(n1)snsn1(n2)

      [注]:①ana1n1dnda1d(d可為零也可不為零→為等差數(shù)列充要條件(即常數(shù)列也是等差數(shù)列)→若d不為0,則是等差數(shù)列充分條件).②等差{an}前n項(xiàng)和Sndddd22AnBnna1n→222可以為零也可不為零→為等差的充要條件→若為零,則是等差數(shù)列的充分條件;若d不為零,則是等差數(shù)列的充分條件.

      ③非零常數(shù)列既可為等比數(shù)列,也可為等差數(shù)列.(不是非零,即不可能有等比數(shù)列)..附:幾種常見(jiàn)的數(shù)列的思想方法:⑴等差數(shù)列的前n項(xiàng)和為Sn,在d0時(shí),有最大值.如何確定使Sn取最大值時(shí)的n值,有兩種方法:

      d2n2一是求使an0,an10,成立的n值;二是由Sn數(shù)列通項(xiàng)公式、求和公式與函數(shù)對(duì)應(yīng)關(guān)系如下:數(shù)列等差數(shù)列等比數(shù)列數(shù)列等差數(shù)列前n項(xiàng)和公式通項(xiàng)公式(a1d2)n利用二次函數(shù)的性質(zhì)求n的值.

      對(duì)應(yīng)函數(shù)(時(shí)為一次函數(shù))(指數(shù)型函數(shù))對(duì)應(yīng)函數(shù)(時(shí)為二次函數(shù))等比數(shù)列(指數(shù)型函數(shù))我們用函數(shù)的觀點(diǎn)揭開(kāi)了數(shù)列神秘的“面紗”,將數(shù)列的通項(xiàng)公式以及前n項(xiàng)和看成是關(guān)于n的函數(shù),為我們解決數(shù)列有關(guān)問(wèn)題提供了非常有益的啟示。

      例題:1、等差數(shù)列分析:因?yàn)橹校瑒t.是等差數(shù)列,所以是關(guān)于n的一次函數(shù),一次函數(shù)圖像是一條直線(xiàn),則(n,m),(m,n),(m+n,)三點(diǎn)共線(xiàn),所以利用每?jī)牲c(diǎn)形成直線(xiàn)斜率相等,即,得=0(圖像如上),這里利用等差數(shù)列通項(xiàng)公式與一次函數(shù)的對(duì)應(yīng)關(guān)系,并結(jié)合圖像,直觀、簡(jiǎn)潔。

      例題:2、等差數(shù)列中,,前n項(xiàng)和為,若,n為何值時(shí)最大?

      分析:等差數(shù)列前n項(xiàng)和可以看成關(guān)于n的二次函數(shù)=,是拋物線(xiàn)=上的離散點(diǎn),根據(jù)題意,,則因?yàn)橛笞畲蟆W畲笾担势鋵?duì)應(yīng)二次函數(shù)圖像開(kāi)口向下,并且對(duì)稱(chēng)軸為,即當(dāng)時(shí),

      例題:3遞增數(shù)列,對(duì)任意正整數(shù)n,遞增得到:恒成立,設(shè)恒成立,求恒成立,即,則只需求出。,因?yàn)槭沁f的最大值即

      分析:構(gòu)造一次函數(shù),由數(shù)列恒成立,所以可,顯然有最大值對(duì)一切對(duì)于一切,所以看成函數(shù)的取值范圍是:構(gòu)造二次函數(shù),,它的定義域是增數(shù)列,即函數(shù)為遞增函數(shù),單調(diào)增區(qū)間為,拋物線(xiàn)對(duì)稱(chēng)軸,因?yàn)楹瘮?shù)f(x)為離散函數(shù),要函數(shù)單調(diào)遞增,就看動(dòng)軸與已知區(qū)間的位置。從對(duì)應(yīng)圖像上看,對(duì)稱(chēng)軸的左側(cè)在也可以(如圖),因?yàn)榇藭r(shí)B點(diǎn)比A點(diǎn)高。于是,,得⑵如果數(shù)列可以看作是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)乘積,求此數(shù)列前n項(xiàng)和可依照等比數(shù)列前n項(xiàng)和的推倒導(dǎo)方法:錯(cuò)位相減求和.例如:112,314,...(2n1)12n,...⑶兩個(gè)等差數(shù)列的相同項(xiàng)亦組成一個(gè)新的等差數(shù)列,此等差數(shù)列的首項(xiàng)就是原兩個(gè)數(shù)列的第一個(gè)相同項(xiàng),公差是兩個(gè)數(shù)列公差d1,d2的最小公倍數(shù).

      2.判斷和證明數(shù)列是等差(等比)數(shù)列常有三種方法:(1)定義法:對(duì)于n≥2的任意自然數(shù),驗(yàn)證anan1(anan1)為同一常數(shù)。(2)通項(xiàng)公式法。(3)中項(xiàng)公式法:驗(yàn)證

      2an1anan2(an1anan2)nN都成立。2am03.在等差數(shù)列{an}中,有關(guān)Sn的最值問(wèn)題:(1)當(dāng)a1>0,d把①式兩邊同乘2后得2sn=122232n2234n1②

      用①-②,即:123nsn=122232n2①2sn=122232n2234n1②得sn12222n22(12)12n1n23nn1n2n122n2n1n1(1n)22∴sn(n1)2n12

      4.倒序相加法:類(lèi)似于等差數(shù)列前n項(xiàng)和公式的推導(dǎo)方法.5.常用結(jié)論1):1+2+3+...+n=n(n1)2212)1+3+5+...+(2n-1)=n3)12nn(n1)2223334)123n22216n(n1)(2n1)5)

      1n(n1)1n1n11n(n2)1pq111()2nn21qp1p1q6)()(pq)

      31、ab0ab;ab0ab;ab0ab.

      32、不等式的性質(zhì):①abba;②ab,bcac;③abacbc;④ab,c0acbc,ab,c0acbc;⑤ab,cdacbd;nd0acabdb0a⑥;⑦⑧ab0nnbn,n1;anbn,n1.

      33、一元二次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的不等式.

      34、含絕對(duì)值不等式、一元二次不等式的解法及延伸1.整式不等式(高次不等式)的解法

      穿根法(零點(diǎn)分段法)求解不等式:a0xa1xnn1a2xn2an0(0)(a00)

      解法:①將不等式化為a0(x-x1)(x-x2)(x-xm)>0(0”,則找“線(xiàn)”在x軸上方的區(qū)間;若不等式是“

      由圖可看出不等式x23x26x80的解集為:

      x|2x1,或x4

      (x1)(x2)(x5)(x6)(x4)0的解集。

      例題:求解不等式

      解:略

      一元二次不等式的求解:

      特例①一元一次不等式ax>b解的討論;

      ②一元二次不等式ax+bx+c>0(a>0)解的討論.

      二次函數(shù)yax22

      000bxc有兩相異實(shí)根x1,x2(x1x2)(a0)的圖象一元二次方程ax2有兩相等實(shí)根x1x2b2abxc0a0的根2無(wú)實(shí)根Raxbxc0(a0)的解集axbxc0(a0)的解集2xxx或xx12bxx2axx1xx2對(duì)于a0(或

      f(x)g(x)(2)轉(zhuǎn)化為整式不等式(組)

      1xf(x)g(x)0f(x)g(x)0;f(x)g(x)00g(x)0g(x)

      f(x)例題:求解不等式:解:略例題:求不等式

      xx11

      1的解集。

      3.含絕對(duì)值不等式的解法:基本形式:

      ①型如:|x|<a(a>0)的不等式的解集為:x|axa②型如:|x|>a(a>0)的不等式的'解集為:x|xa,或xa變型:

      其中-c3x23x23x2(x2)(x3)10xR③當(dāng)x2時(shí),(去絕對(duì)值符號(hào))原不等式化為:x2x292x9(x2)(x3)102x2由①②③得原不等式的解集為:x|112x9(注:是把①②③的解集并在一起)2y函數(shù)圖像法:

      令f(x)|x2||x3|

      2x1(x3)則有:f(x)5(3x2)

      2x1(x2)f(x)=1051123o292x在直角坐標(biāo)系中作出此分段函數(shù)及f(x)10的圖像如圖11292由圖像可知原不等式的解集為:x|x4.一元二次方程ax2+bx+c=0(a>0)的實(shí)根的分布常借助二次函數(shù)圖像來(lái)分析:y設(shè)ax2+bx+c=0的兩根為、,f(x)=ax2+bx+c,那么:0①若兩根都大于0,即0,0,則有0

      0o對(duì)稱(chēng)軸x=b2ax

      0b0②若兩根都小于0,即0,0,則有2af(0)0y

      11

      對(duì)稱(chēng)軸x=b2aox

      ③若兩根有一根小于0一根大于0,即0,則有f(0)0

      ④若兩根在兩實(shí)數(shù)m,n之間,即mn,

      0bnm則有2af(m)0of(n)0yoxymX=b2anx⑤若兩個(gè)根在三個(gè)實(shí)數(shù)之間,即mtn,

      yf(m)0則有f(t)0

      f(n)0

      常由根的分布情況來(lái)求解出現(xiàn)在a、b、c位置上的參數(shù)

      例如:若方程x2(m1)xm2m30有兩個(gè)正實(shí)數(shù)根,求m的取值范圍。

      4(m1)24(m22m3)00m1m1m3解:由①型得02(m1)00m1,或m32m2m3022omX=tb2anx所以方程有兩個(gè)正實(shí)數(shù)根時(shí),m3。

      又如:方程xxm10的一根大于1,另一根小于1,求m的范圍。

      55220m(1)4(m1)02解:因?yàn)橛袃蓚(gè)不同的根,所以由21m122f(1)011m101m122

      35、二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是1的不等式.

      36、二元一次不等式組:由幾個(gè)二元一次不等式組成的不等式組.

      37、二元一次不等式(組)的解集:滿(mǎn)足二元一次不等式組的x和y的取值構(gòu)成有序數(shù)對(duì)x,y,所有這樣的有序數(shù)對(duì)x,y構(gòu)成的集合.

      38、在平面直角坐標(biāo)系中,已知直線(xiàn)xyC0,坐標(biāo)平面內(nèi)的點(diǎn)x0,y0.①若0,x0y0C0,則點(diǎn)x0,y0在直線(xiàn)xyC0的上方.②若0,x0y0C0,則點(diǎn)x0,y0在直線(xiàn)xyC0的下方.

      39、在平面直角坐標(biāo)系中,已知直線(xiàn)xyC0.(一)由B確定:①若0,則xyC0表示直線(xiàn)xyC0上方的區(qū)域;xyC0表示直線(xiàn)xyC0下方的區(qū)域.

      ②若0,則xyC0表示直線(xiàn)xyC0下方的區(qū)域;xyC0表示直線(xiàn) xyC0上方的區(qū)域.

      (二)由A的符號(hào)來(lái)確定:先把x的系數(shù)A化為正后,看不等號(hào)方向:①若是“>”號(hào),則xyC0所表示的區(qū)域?yàn)橹本(xiàn)l:xyC0的右邊部分。②若是“線(xiàn)性規(guī)劃問(wèn)題:求線(xiàn)性目標(biāo)函數(shù)在線(xiàn)性約束條件下的最大值或最小值問(wèn)題.可行解:滿(mǎn)足線(xiàn)性約束條件的解x,y.可行域:所有可行解組成的集合.最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解.

      41、設(shè)a、b是兩個(gè)正數(shù),則ab2稱(chēng)為正數(shù)a、b的算術(shù)平均數(shù),ab稱(chēng)為正數(shù)a、b的幾何平均數(shù).a(chǎn)b2ab.

      42、均值不等式定理:若a0,b0,則ab2ab,即

      43、常用的基本不等式:①ab2aba,bR;②ab222ab222a,bR;③abab2a0,b0;2④ab222ab2a,bR.

      44、極值定理:設(shè)x、y都為正數(shù),則有:

      ⑴若xys(和為定值),則當(dāng)xy時(shí),積xy取得最大值s42.⑵若xyp(積為定值),則當(dāng)xy時(shí),和xy取得最小值2例題:已知x解:∵x5454p.14x5,求函數(shù)f(x)4x2的最大值。

      ,∴4x50由原式可以化為:f(x)4x55214x5(54x)154x3[(54x)154x]3(54x)154x3132當(dāng)54x154x2,即(54x)1x1,或x32(舍去)時(shí)取到“=”號(hào)也就是說(shuō)當(dāng)x1時(shí)有f(x)max2

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)10

      數(shù)學(xué)是利用符號(hào)語(yǔ)言研究數(shù)量、結(jié)構(gòu)、變化以及空間模型等概念的一門(mén)學(xué)科。小編準(zhǔn)備了高一數(shù)學(xué)必修1期末考知識(shí)點(diǎn),希望你喜歡。

      一、集合有關(guān)概念

      1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.

      2、集合的中元素的三個(gè)特性:

      1.元素的確定性; 2.元素的互異性; 3.元素的無(wú)序性

      說(shuō)明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.

      (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

      (3)集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

      (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.

      3、集合的表示:{ } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

      1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

      2.集合的表示方法:列舉法與描述法.

      注意啊:常用數(shù)集及其記法:

      非負(fù)整數(shù)集(即自然數(shù)集)記作:N

      正整數(shù)集 N*或N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

      關(guān)于屬于的概念

      集合的元素通常用小寫(xiě)的拉丁字母表示,如:a是集合A的元素,就說(shuō)a屬于集合A 記作 aA ,相反,a不屬于集合A 記作 a?A

      列舉法:把集合中的元素一一列舉出來(lái),然后用一個(gè)大括號(hào)括上.

      描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.

      ①語(yǔ)言描述法:例:{不是直角三角形的三角形}

      ②數(shù)學(xué)式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}

      4、集合的分類(lèi):

      1.有限集 含有有限個(gè)元素的集合

      2.無(wú)限集 含有無(wú)限個(gè)元素的集合

      3.空集 不含任何元素的集合 例:{x|x2=-5}

      二、集合間的基本關(guān)系

      1.包含關(guān)系子集

      注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合.

      反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

      2.相等關(guān)系(55,且55,則5=5)

      實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} 元素相同

      結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí),集合B的任何一個(gè)元素都是集合A的元素,我們就說(shuō)集合A等于集合B,即:A=B

      ① 任何一個(gè)集合是它本身的`子集.AA

      ②真子集:如果AB,且A1 B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

      ③如果 AB, BC ,那么 AC

      ④ 如果AB 同時(shí) BA 那么A=B

      3. 不含任何元素的集合叫做空集,記為

      規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

      三、集合的運(yùn)算

      1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.

      記作AB(讀作A交B),即AB={x|xA,且xB}.

      2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作A并B),即AB={x|xA,或xB}.

      3、交集與并集的性質(zhì):AA = A, A=, AB = BA,AA = A,

      A= A ,AB = BA.

      4、全集與補(bǔ)集

      (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

      (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用U來(lái)表示.

      (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA) ⑶(CUA)A=U

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)11

      定義:

      x軸正向與直線(xiàn)向上方向之間所成的角叫直線(xiàn)的傾斜角。特別地,當(dāng)直線(xiàn)與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。

      范圍:

      傾斜角的取值范圍是0°≤α

      理解:

      (1)注意“兩個(gè)方向”:直線(xiàn)向上的方向、x軸的正方向;

      (2)規(guī)定當(dāng)直線(xiàn)和x軸平行或重合時(shí),它的傾斜角為0度。

      意義:

      ①直線(xiàn)的傾斜角,體現(xiàn)了直線(xiàn)對(duì)x軸正向的傾斜程度;

      ②在平面直角坐標(biāo)系中,每一條直線(xiàn)都有一個(gè)確定的傾斜角;

      ③傾斜角相同,未必表示同一條直線(xiàn)。

      公式:

      k=tanα

      k>0時(shí)α∈(0°,90°)

      k

      k=0時(shí)α=0°

      當(dāng)α=90°時(shí)k不存在

      ax+by+c=0(a≠0)傾斜角為A,則tanA=-a/b,A=arctan(-a/b)

      當(dāng)a≠0時(shí),傾斜角為90度,即與X軸垂直

      兩角和與差的三角函數(shù):

      cos(α+β)=cosα·cosβ-sinα·sinβ

      cos(α-β)=cosα·cosβ+sinα·sinβ

      sin(α±β)=sinα·cosβ±cosα·sinβ

      tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

      tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

      三角和的三角函數(shù):

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      輔助角公式:

      Asinα+Bcosα=(A2+B2)^(1/2)sin(α+t),其中

      sint=B/(A2+B2)^(1/2)

      cost=A/(A2+B2)^(1/2)

      tant=B/A

      Asinα-Bcosα=(A2+B2)^(1/2)cos(α-t),tant=A/B

      倍角公式:

      sin(2α)=2sinα·cosα=2/(tanα+cotα)

      cos(2α)=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

      tan(2α)=2tanα/[1-tan2(α)]

      三倍角公式:

      sin(3α)=3sinα-4sin3(α)=4sinα·sin(60+α)sin(60-α)

      cos(3α)=4cos3(α)-3cosα=4cosα·cos(60+α)cos(60-α)

      tan(3α)=tana·tan(π/3+a)·tan(π/3-a)

      半角公式:

      sin(α/2)=±√((1-cosα)/2)

      cos(α/2)=±√((1+cosα)/2)

      tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

      降冪公式

      sin2(α)=(1-cos(2α))/2=versin(2α)/2

      cos2(α)=(1+cos(2α))/2=covers(2α)/2

      tan2(α)=(1-cos(2α))/(1+cos(2α))

      萬(wàn)能公式:

      sinα=2tan(α/2)/[1+tan2(α/2)]

      cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

      tanα=2tan(α/2)/[1-tan2(α/2)]

      積化和差公式:

      sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

      cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

      cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

      sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

      和差化積公式:

      sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

      sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

      cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

      cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

      二面角

      (1)半平面:平面內(nèi)的一條直線(xiàn)把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

      (2)二面角:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的`取值范圍為[0°,180°]

      (3)二面角的棱:這一條直線(xiàn)叫做二面角的棱。

      (4)二面角的面:這兩個(gè)半平面叫做二面角的面。

      (5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫做二面角的平面角。

      (6)直二面角:平面角是直角的二面角叫做直二面角。

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12

      【基本初等函數(shù)】

      一、指數(shù)函數(shù)

      (一)指數(shù)與指數(shù)冪的運(yùn)算

      1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

      當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開(kāi)方數(shù)(radicand)。

      當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的.次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒(méi)有偶次方根;0的任何次方根都是0,記作。

      注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

      2、分?jǐn)?shù)指數(shù)冪

      正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

      0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義

      指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

      3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

      (二)指數(shù)函數(shù)及其性質(zhì)

      1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域?yàn)镽。

      注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

      2、指數(shù)函數(shù)的圖象和性質(zhì)

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)13

      知識(shí)點(diǎn)總結(jié)

      本節(jié)知識(shí)包括函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性和函數(shù)的圖象等知識(shí)點(diǎn)。函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的周期性、函數(shù)的最值、函數(shù)的對(duì)稱(chēng)性是學(xué)習(xí)函數(shù)的圖象的基礎(chǔ),函數(shù)的圖象是它們的綜合。所以理解了前面的幾個(gè)知識(shí)點(diǎn),函數(shù)的圖象就迎刃而解了。

      一、函數(shù)的單調(diào)性

      1、函數(shù)單調(diào)性的定義

      2、函數(shù)單調(diào)性的判斷和證明:(1)定義法 (2)復(fù)合函數(shù)分析法 (3)導(dǎo)數(shù)證明法 (4)圖象法

      二、函數(shù)的奇偶性和周期性

      1、函數(shù)的奇偶性和周期性的定義

      2、函數(shù)的奇偶性的判定和證明方法

      3、函數(shù)的周期性的.判定方法

      三、函數(shù)的圖象

      1、函數(shù)圖象的作法 (1)描點(diǎn)法 (2)圖象變換法

      2、圖象變換包括圖象:平移變換、伸縮變換、對(duì)稱(chēng)變換、翻折變換。

      常見(jiàn)考法

      本節(jié)是段考和高考必不可少的考查內(nèi)容,是段考和高考考查的重點(diǎn)和難點(diǎn)。選擇題、填空題和解答題都有,并且題目難度較大。在解答題中,它可以和高中數(shù)學(xué)的每一章聯(lián)合考查,多屬于拔高題。多考查函數(shù)的單調(diào)性、最值和圖象等。

      誤區(qū)提醒

      1、求函數(shù)的單調(diào)區(qū)間,必須先求函數(shù)的定義域,即遵循“函數(shù)問(wèn)題定義域優(yōu)先的原則”。

      2、單調(diào)區(qū)間必須用區(qū)間來(lái)表示,不能用集合或不等式,單調(diào)區(qū)間一般寫(xiě)成開(kāi)區(qū)間,不必考慮端點(diǎn)問(wèn)題。

      3、在多個(gè)單調(diào)區(qū)間之間不能用“或”和“ ”連接,只能用逗號(hào)隔開(kāi)。

      4、判斷函數(shù)的奇偶性,首先必須考慮函數(shù)的定義域,如果函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱(chēng),則函數(shù)一定是非奇非偶函數(shù)。

      5、作函數(shù)的圖象,一般是首先化簡(jiǎn)解析式,然后確定用描點(diǎn)法或圖象變換法作函數(shù)的圖象。

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)14

      【公式一】

      設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

      sin(2kπ+α)=sinα(k∈Z)

      cos(2kπ+α)=cosα(k∈Z)

      tan(2kπ+α)=tanα(k∈Z)

      cot(2kπ+α)=cotα(k∈Z)

      【公式二】

      設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

      sin(π+α)=-sinα

      cos(π+α)=-cosα

      tan(π+α)=tanα

      cot(π+α)=cotα

      【公式三】

      任意角α與-α的三角函數(shù)值之間的關(guān)系:

      sin(-α)=-sinα

      cos(-α)=cosα

      tan(-α)=-tanα

      cot(-α)=-cotα

      【公式四】

      利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(π-α)=sinα

      cos(π-α)=-cosα

      tan(π-α)=-tanα

      cot(π-α)=-cotα

      【公式五】

      利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

      sin(2π-α)=-sinα

      cos(2π-α)=cosα

      tan(2π-α)=-tanα

      cot(2π-α)=-cotα

      【公式六】

      π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

      sin(π/2+α)=cosα

      cos(π/2+α)=-sinα

      tan(π/2+α)=-cotα

      cot(π/2+α)=-tanα

      sin(π/2-α)=cosα

      cos(π/2-α)=sinα

      tan(π/2-α)=cotα

      cot(π/2-α)=tanα

      sin(3π/2+α)=-cosα

      cos(3π/2+α)=sinα

      tan(3π/2+α)=-cotα

      cot(3π/2+α)=-tanα

      sin(3π/2-α)=-cosα

      cos(3π/2-α)=-sinα

      tan(3π/2-α)=cotα

      cot(3π/2-α)=tanα

      (以上k∈Z)

      【高一數(shù)學(xué)函數(shù)復(fù)習(xí)資料】

      一、定義與定義式:

      自變量x和因變量y有如下關(guān)系:

      y=kx+b

      則此時(shí)稱(chēng)y是x的一次函數(shù)。

      特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

      即:y=kx(k為常數(shù),k≠0)

      二、一次函數(shù)的性質(zhì):

      的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k

      即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

      當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

      三、一次函數(shù)的圖像及性質(zhì):

      作法與圖形:通過(guò)如下3個(gè)步驟

      (1)列表;

      (2)描點(diǎn);

      (3)連線(xiàn),可以作出一次函數(shù)的圖像——一條直線(xiàn)。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線(xiàn)即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

      性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

      ,b與函數(shù)圖像所在象限:

      當(dāng)k>0時(shí),直線(xiàn)必通過(guò)一、三象限,y隨x的'增大而增大;

      當(dāng)k

      當(dāng)b>0時(shí),直線(xiàn)必通過(guò)一、二象限;

      當(dāng)b=0時(shí),直線(xiàn)通過(guò)原點(diǎn)

      當(dāng)b

      特別地,當(dāng)b=O時(shí),直線(xiàn)通過(guò)原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

      這時(shí),當(dāng)k>0時(shí),直線(xiàn)只通過(guò)一、三象限;當(dāng)k

      四、確定一次函數(shù)的表達(dá)式:

      已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過(guò)點(diǎn)A、B的一次函數(shù)的表達(dá)式。

      (1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。

      (2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿(mǎn)足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

      (3)解這個(gè)二元一次方程,得到k,b的值。

      (4)最后得到一次函數(shù)的表達(dá)式。

      五、一次函數(shù)在生活中的應(yīng)用:

      當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。

      當(dāng)水池抽水速度f(wàn)一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S-ft。

      六、常用公式:(不全,希望有人補(bǔ)充)

      求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

      求與x軸平行線(xiàn)段的中點(diǎn):|x1-x2|/2

      求與y軸平行線(xiàn)段的中點(diǎn):|y1-y2|/2

      求任意線(xiàn)段的長(zhǎng):√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)15

      集合的運(yùn)算

      1。交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。

      記作AB(讀作A交B),即AB={x|xA,且xB}。

      2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:AB(讀作A并B),即AB={x|xA,或xB}。

      3、交集與并集的.性質(zhì):AA=A,A=,AB=BA,AA=A,A=A,AB=BA。

      4、全集與補(bǔ)集

      (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

      (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來(lái)表示。

      (3)性質(zhì):

      ⑴CU(CUA)=A

      ⑵(CUA)

      ⑶(CUA)A=U

    【高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)08-01

    高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12-15

    高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)07-18

    高一數(shù)學(xué)必修五知識(shí)點(diǎn)總結(jié)07-25

    高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)05-17

    高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)01-12

    高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)01-03

    高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)11-08

    高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)03-08

    亚洲国产精品一区二区久久| 原来神马影院电视剧在线观看视频| 少妇荡乳情欲办公室456视频| 日韩人妻无码精品| 99久re热视频这里只有精品6| 国产精品污WWW一区二区三区| 国产精品欧美日韩一区二区| 国产3级在线观看| 免费看午夜高清性色生活片| 久久国产精品不只是精品|