數(shù)列的知識點總結(jié)
數(shù)列可以看作一個定義域為正整數(shù)集N*或其有限子集。以下是小編為大家整理分享的數(shù)列的知識點總結(jié),歡迎閱讀參考。
數(shù)列的知識點總結(jié)
數(shù)列知識:數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N*或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。
數(shù)列
①用函數(shù)的觀點認識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。
數(shù)列的一般形式可以寫成
a1,a2,a3,…,an,a(n+1),……
簡記為{an},
項數(shù)有限的數(shù)列為“有窮數(shù)列”(finite sequence),
項數(shù)無限的數(shù)列為“無窮數(shù)列”(infinite sequence)。
數(shù)列的各項都是正數(shù)的為正項數(shù)列;
從第2項起,每一項都大于它的前一項的數(shù)列叫做遞增數(shù)列;如:1,2,3,4,5,6,7;
從第2項起,每一項都小于它的前一項的數(shù)列叫做遞減數(shù)列;如:8,7,6,5,4,3,2,1;
從第2項起,有些項大于它的前一項,有些項小于它的前一項的數(shù)列叫做擺動數(shù)列;
各項呈周期性變化的數(shù)列叫做周期數(shù)列(如三角函數(shù));
各項相等的數(shù)列叫做常數(shù)列(如:2,2,2,2,2,2,2,2,2)。
通項公式:數(shù)列的第N項an與項的序數(shù)n之間的關(guān)系可以用一個公式an=f(n)來表示,這個公式就叫做這個數(shù)列的通項公式(注:通項公式不唯一)。
遞推公式:如果數(shù)列{an}的第n項與它前一項或幾項的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。
數(shù)列中項的總數(shù)為數(shù)列的項數(shù)。特別地,數(shù)列可以看成以正整數(shù)集N*(或它的有限子集{1,2,…,n})為定義域的函數(shù)an=f(n)。
如果可以用一個公式來表示,則它的通項公式是a(n)=f(n).
并非所有的數(shù)列都能寫出它的通項公式。例如:π的不同近似值,根據(jù)精確的程度,可形成一個數(shù)列3,3.1,3.14,3.141,…它沒有通項公式。
數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復(fù)數(shù)。
用符號{an}表示數(shù)列,只不過是“借用”集合的符號,它們之間有本質(zhì)上的區(qū)別:1.集合中的元素是互異的,而數(shù)列中的項可以是相同的。2.集合中的元素是無序的,而數(shù)列中的項必須按一定順序排列,也就是必須是有序的。
知識拓展:函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
對于平面直角坐標(biāo)系的構(gòu)成內(nèi)容,下面我們一起來學(xué)習(xí)哦。
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的`公共原點O稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
下面是對數(shù)學(xué)中點的坐標(biāo)的性質(zhì)知識學(xué)習(xí),同學(xué)們認真看看哦。
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
關(guān)于數(shù)學(xué)中因式分解的一般步驟內(nèi)容學(xué)習(xí),我們做下面的知識講解。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認真學(xué)習(xí)。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
②不準(zhǔn)丟常數(shù)項注意查項數(shù)
③雙重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括號外
⑦括號內(nèi)同類項合并。
【數(shù)列的知識點總結(jié)】相關(guān)文章:
《等比數(shù)列》說課稿12-23
等比數(shù)列的前n項和說課稿11-04
等差數(shù)列的前n項和說課稿11-04
中職數(shù)學(xué)等比數(shù)列說課稿04-07
語文背影的知識點總結(jié)12-07
《觀潮》知識點總結(jié)11-17
《化石吟》知識點總結(jié)11-11
文秘專業(yè)知識點總結(jié)04-07
高二化學(xué)知識點總結(jié)01-14