www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    高一數(shù)學(xué)下冊(cè)《》知識(shí)點(diǎn)總結(jié)

    時(shí)間:2021-04-11 19:08:48 總結(jié) 我要投稿

    高一數(shù)學(xué)下冊(cè)《集合》知識(shí)點(diǎn)總結(jié)

      數(shù)學(xué)是一門重要的學(xué)科,下面是小編整理的高一數(shù)學(xué)下冊(cè)《集合》知識(shí)點(diǎn)總結(jié),希望對(duì)大家有幫助!

    高一數(shù)學(xué)下冊(cè)《集合》知識(shí)點(diǎn)總結(jié)

      一、集合有關(guān)概念

      1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

      2、集合的中元素的三個(gè)特性:

      1.元素的確定性; 2.元素的互異性; 3.元素的無序性

      說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

      (2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

      (3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

      (4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

      3、集合的表示:{ … } 如{我校的籃球隊(duì)員},{太平洋大西洋印度洋北冰洋}

      1. 用拉丁字母表示集合:A={我校的籃球隊(duì)員}B={12345}

      2.集合的表示方法:列舉法與描述法。

      注意啊:常用數(shù)集及其記法:

      非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

      正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

      關(guān)于“屬于”的概念

      集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A

      列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。

      描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

      ①語言描述法:例:{不是直角三角形的三角形}

      ②數(shù)學(xué)式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

      4、集合的分類:

      1.有限集 含有有限個(gè)元素的集合

      2.無限集 含有無限個(gè)元素的集合

      3.空集 不含任何元素的集合 例:{x|x2=-5}

      二、集合間的'基本關(guān)系

      1.“包含”關(guān)系子集

      注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

      反之: 集合A不包含于集合B或集合B不包含集合A記作A B或B A

      2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

      實(shí)例:設(shè) A={x|x2-1=0} B={-11} “元素相同”

      結(jié)論:對(duì)于兩個(gè)集合A與B,如果集合A的任何一個(gè)元素都是集合B的元素,同時(shí)集合B的任何一個(gè)元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

      ① 任何一個(gè)集合是它本身的子集。A?A

      ②真子集:如果A?B且A? B那就說集合A是集合B的真子集,記作A B(或B A)

      ③如果 A?B B?C 那么 A?C

      ④ 如果A?B 同時(shí) B?A 那么A=B

      3. 不含任何元素的集合叫做空集,記為Φ

      規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

      三、集合的運(yùn)算

      1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合叫做AB的交集.

      記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.

      2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做AB的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}.

      3、交集與并集的性質(zhì):A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A

      A∪φ= A A∪B = B∪A.

      4、全集與補(bǔ)集

      (1)補(bǔ)集:設(shè)S是一個(gè)集合,A是S的一個(gè)子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

      記作: CSA 即 CSA ={x ? x?S且 x?A}

      (2)全集:如果集合S含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用U來表示。

      (3)性質(zhì):⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U

    午夜久久久久久亚洲国产精品| 亚洲色图无码高免费| 一道高清无码视频久久久久| 国产精品亚洲а∨天堂2021| 国产无遮挡又黄又爽在线观看| 校服太透了r头凸出来了| 性色AV一区二区三区| 白丝jk网站国产免费| 中文字幕人妻丝袜乱一区三区久久久久精品影院| 亚洲av网站|