- 相關(guān)推薦
高中概率知識(shí)點(diǎn)總結(jié)
概率,又稱或然率、機(jī)會(huì)率、機(jī)率(幾率)或可能性,它是概率論的基本概念。概率是對(duì)隨機(jī)事件發(fā)生的可能性的度量,一般以一個(gè)在0到1之間的實(shí)數(shù)表示一個(gè)事件發(fā)生的可能性大小。以下是小編整理的高中概率知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家!
算法,概率和統(tǒng)計(jì)
1.算法初步(約12課時(shí))
(1)算法的含義、程序框圖
①通過對(duì)解決具體問題過程與步驟的分析(如,二元一次方程組求解等問題),體會(huì)算法的思想,了解算法的含義。
②通過模仿、操作、探索,經(jīng)歷通過設(shè)計(jì)程序框圖表達(dá)解決問題的過程。在具體問題的解決過程中(如,三元一次方程組求解等問題),理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán)。
(2)基本算法語(yǔ)句
經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語(yǔ)句的過程,理解幾種基本算法語(yǔ)句--輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句、循環(huán)語(yǔ)句,進(jìn)一步體會(huì)算法的基本思想。
(3)通過閱讀中國(guó)古代中的算法案例,體會(huì)中國(guó)古代對(duì)世界發(fā)展的貢獻(xiàn)。
3.概率(約8課時(shí))
(1)在具體情境中,了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,進(jìn)一步了解概率的意義以及頻率與概率的區(qū)別。
(2)通過實(shí)例,了解兩個(gè)互斥事件的概率加法公式。
(3)通過實(shí)例,理解古典概型及其概率計(jì)算公式,會(huì)用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率。
(4)了解隨機(jī)數(shù)的意義,能運(yùn)用模擬(包括計(jì)算器產(chǎn)生隨機(jī)數(shù)來(lái)進(jìn)行模擬)估計(jì)概率,初步體會(huì)幾何概型的意義(參見例3)。
(5)通過閱讀材料,了解人類認(rèn)識(shí)隨機(jī)現(xiàn)象的過程。
2.統(tǒng)計(jì)(約16課時(shí))
(1)隨機(jī)抽樣
①能從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問題。
②結(jié)合具體的實(shí)際問題情境,理解隨機(jī)抽樣的必要性和重要性。
③在參與解決統(tǒng)計(jì)問題的過程中,學(xué)會(huì)用簡(jiǎn)單隨機(jī)抽樣方法從總體中抽取樣本;通過對(duì)實(shí)例的分析,了解分層抽樣和系統(tǒng)抽樣方法。
④能通過試驗(yàn)、查閱、設(shè)計(jì)調(diào)查問卷等方法收集數(shù)據(jù)。
(2)用樣本估計(jì)總體
①通過實(shí)例體會(huì)分布的意義和作用,在表示樣本數(shù)據(jù)的過程中,學(xué)會(huì)列頻率分布表、畫頻率分布直方圖、頻率折線圖、莖葉圖(參見例1),體會(huì)他們各自的特點(diǎn)。
②通過實(shí)例理解樣本數(shù)據(jù)標(biāo)準(zhǔn)差的意義和作用,學(xué)會(huì)計(jì)算數(shù)據(jù)標(biāo)準(zhǔn)差。
③能根據(jù)實(shí)際問題的需求合理地選取樣本,從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標(biāo)準(zhǔn)差),并作出合理的解釋。
④在解決統(tǒng)計(jì)問題的過程中,進(jìn)一步體會(huì)用樣本估計(jì)總體的思想,會(huì)用樣本的頻率分布估計(jì)總體分布,會(huì)用樣本的基本數(shù)字特征估計(jì)總體的基本數(shù)字特征;初步體會(huì)樣本頻率分布和數(shù)字特征的隨機(jī)性。
⑤會(huì)用隨機(jī)抽樣的基本方法和樣本估計(jì)總體的思想,解決一些簡(jiǎn)單的實(shí)際問題;能通過對(duì)數(shù)據(jù)的分析為合理的決策提供一些依據(jù),認(rèn)識(shí)統(tǒng)計(jì)的作用,體會(huì)統(tǒng)計(jì)與確定性的差異。
⑥形成對(duì)數(shù)據(jù)處理過程進(jìn)行初步評(píng)價(jià)的意識(shí)。
(3)變量的相關(guān)性
①通過收集現(xiàn)實(shí)問題中兩個(gè)有關(guān)聯(lián)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識(shí)變量間的相關(guān)關(guān)系。
②經(jīng)歷用不同估算方法描述兩個(gè)變量線性相關(guān)的過程。知道最小二乘法的思想,能根據(jù)給出的線性回歸方程系數(shù)公式建立線性回歸方程。
常用邏輯用語(yǔ)
1、命題及其關(guān)系
①了解命題的逆命題、否命題與逆否命題。
②理解必要條件、充分條件與充要條件的意義,會(huì)分析四種命題的相互關(guān)系。
(2)簡(jiǎn)單的邏輯聯(lián)結(jié)詞
通過數(shù)學(xué)實(shí)例,了解"或"、"且"、"非"的含義。
(3)全稱量詞與存在量詞
①通過生活和數(shù)學(xué)中的豐富實(shí)例,理解全稱量詞與存在量詞的意義。
②能正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定。
3.導(dǎo)數(shù)及其應(yīng)用(約16課時(shí))
(1)導(dǎo)數(shù)概念及其幾何意義
①通過對(duì)大量實(shí)例的分析,經(jīng)歷由平均變化率過渡到瞬時(shí)變化率的過程,了解導(dǎo)數(shù)概念的實(shí)際背景,知道瞬時(shí)變化率就是導(dǎo)數(shù),體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵(參見例2、例3)。
②通過函數(shù)圖像直觀解導(dǎo)數(shù)的幾何意義。
(2)導(dǎo)數(shù)的運(yùn)算
①能根據(jù)導(dǎo)數(shù)定義,求函數(shù)y=c,y=x,y=x2,y=1/x的導(dǎo)數(shù)。
②能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù)。
③會(huì)使用導(dǎo)數(shù)公式表 高中物理。
(3)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
①結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系(參見例4);能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間。
②結(jié)合函數(shù)的圖像,了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件;會(huì)用導(dǎo)數(shù)求不超過三次的多項(xiàng)式函數(shù)的極大值、極小值,以及在給定區(qū)間上不超過三次的多項(xiàng)式函數(shù)的最大值、最小值。2.圓錐曲線與方程(約12課時(shí))
(1)了解圓錐曲線的實(shí)際背景,感受圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用。
(2)經(jīng)歷從具體情境中抽象出橢圓模型的過程(參見例1),掌握橢圓的定義、標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì)。
(3)了解拋物線、雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它們的簡(jiǎn)單幾何性質(zhì)。
(4)通過圓錐曲線與方程的,進(jìn)一步體會(huì)數(shù)形結(jié)合的思想。
(5)了解圓錐曲線的簡(jiǎn)單應(yīng)用。
隨機(jī)事件的概率及概率的意義
1、基本概念:
(1)必然事件:在條件S下,一定會(huì)發(fā)生的事件,叫相對(duì)于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會(huì)發(fā)生的事件,叫相對(duì)于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對(duì)于條件S的確定事件;
(4)隨機(jī)事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對(duì)于條件S的隨機(jī)事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗(yàn),觀察某一事件A是否出現(xiàn),稱n次試驗(yàn)中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);對(duì)于給定的隨機(jī)事件A,如果隨著試驗(yàn)次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個(gè)常數(shù)上,把這個(gè)常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗(yàn)總次數(shù)n的比值,它具有一定的穩(wěn)定性,總在某個(gè)常數(shù)附近擺動(dòng),且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動(dòng)幅度越來(lái)越小。我們把這個(gè)常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個(gè)事件的概率
概率的基本性質(zhì)
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B為不可能事件,即A∩B=ф,那么稱事件A與事件B互斥;
(3)若A∩B為不可能事件,A∪B為必然事件,那么稱事件A與事件B互為對(duì)立事件;
(4)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對(duì)立事件,則A∪B為必然事件,所以
P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性質(zhì):
1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;
2)當(dāng)事件A與B互斥時(shí),滿足加法公式:P(A∪B)=P(A)+P(B);
3)若事件A與B為對(duì)立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);
4)互斥事件與對(duì)立事件的區(qū)別與聯(lián)系,互斥事件是指事件A與事件B在一次試驗(yàn)中不會(huì)同時(shí)發(fā)生,其具體包括三種不同的情形:(1)事件A發(fā)生且事件B不發(fā)生;
(2)事件A不發(fā)生且事件B發(fā)生;
(3)事件A與事件B同時(shí)不發(fā)生,而對(duì)立事件是指事件A與事件B有且僅有一個(gè)發(fā)生,其包括兩種情形;
(1)事件A發(fā)生B不發(fā)生;
(2)事件B發(fā)生事件A不發(fā)生,對(duì)立事件互斥事件的特殊情形。三.古典概型及隨機(jī)數(shù)的產(chǎn)生
(1)古典概型的使用條件:試驗(yàn)結(jié)果的有限性和所有結(jié)果的等可能性。
(2)古典概型的解題步驟;
①求出總的基本事件數(shù);
②求出事件A所包含的基本事件數(shù),然后利用公式P(A)=
幾何概型及均勻隨機(jī)數(shù)的產(chǎn)生
基本概念:
(1)幾何概率模型:如果每個(gè)事件發(fā)生的概率只與構(gòu)成該事件區(qū)域的長(zhǎng)度(面積或體積)成比例,則稱這樣的概率模型為幾何概率模型;
(2)幾何概型的概率公式:P(A)=;
(3)幾何概型的特點(diǎn):
1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無(wú)限多個(gè);
2)每個(gè)基本事件出現(xiàn)的可能性相等
古典概率與幾何概率
1、基本事件特點(diǎn):任何兩個(gè)基本事件是互斥的;任何事件(除不可能事件)都可以表示成基本事件的和。
2、古典概率:具有下列兩個(gè)特征的隨機(jī)試驗(yàn)的數(shù)學(xué)模型稱為古典概型:
(1)試驗(yàn)中所有可能出現(xiàn)的基本事件只有有限個(gè);(2)每個(gè)基本事件出現(xiàn)的可能性相等.
P(A)A中所含樣本點(diǎn)的個(gè)數(shù)nA中所含樣本點(diǎn)的個(gè)數(shù)n.
3、幾何概率:如果隨機(jī)試驗(yàn)的樣本空間是一個(gè)區(qū)域(可以是直線上的區(qū)間、平面或空間中的區(qū)域),且樣本空間中每個(gè)試驗(yàn)結(jié)果的出現(xiàn)具有等可能性,那么規(guī)定事件A的概率為幾何概率.幾何概率具有無(wú)限性和等可能性。
4、古典概率和幾何概率的基本事件都是等可能的;但古典概率基本事件的個(gè)數(shù)是有限的,幾何概率的是無(wú)限個(gè)的
計(jì)數(shù)與概率問題在近幾年的高考中都加大了考查的力度,每年都以解答題的形式出現(xiàn)。在復(fù)習(xí)過程中,由于知識(shí)抽象性強(qiáng),學(xué)習(xí)中要注重基礎(chǔ)知識(shí)和基本方法,不可過深,過難。復(fù)習(xí)時(shí)可從最基本的公式,定理,題型入手,恰當(dāng)選取典型例題,構(gòu)建思維模式,造成思維依托和思維的合理定勢(shì)。
另外,要加強(qiáng)數(shù)學(xué)思想方法的訓(xùn)練,這部分所涉及的數(shù)學(xué)思想主要有:分類討論思想、等價(jià)轉(zhuǎn)化思想、整體思想、數(shù)形結(jié)合思想,在概率和概率與統(tǒng)計(jì)中又體現(xiàn)了概率思想、統(tǒng)計(jì)思想、數(shù)學(xué)建模的思想等。在復(fù)習(xí)中應(yīng)有意識(shí)用數(shù)學(xué)思想方法指導(dǎo)解題,不可就題論題,將問題孤立,片面強(qiáng)調(diào)單一知識(shí)和題型。
能力方面主要考查:運(yùn)算能力、邏輯思維能力、抽象思維能力、分析問題和解決實(shí)際問題的能力。在高考中本部分以考查實(shí)際問題為主,解決它不能機(jī)械地套用模式,而要認(rèn)真分析,抽象出其中的數(shù)量關(guān)系,轉(zhuǎn)化為數(shù)學(xué)問題,再利用有關(guān)的數(shù)學(xué)知識(shí)加以解決。
概率初步的有關(guān)概念
(1)必然事件是指一定能發(fā)生的事件,或者說發(fā)生的可能性是100%;
(2)不可能事件是指一定不能發(fā)生的事件;
(3)隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件;
(4)隨機(jī)事件的可能性
一般地,隨機(jī)事件發(fā)生的可能性是有大小的,不同的隨機(jī)事件發(fā)生的可能性的大小有可能不同.
(5)概率
一般地,在大量重復(fù)試驗(yàn)中,如果事件A發(fā)生的頻率會(huì)穩(wěn)定在某個(gè)常數(shù)P附近,那么這個(gè)常數(shù)P就叫做事件A的概率,記為P(A)=P.
(6)可能性與概率的關(guān)系
事件發(fā)生的可能性越大,它的概率越接近于1,反之事件發(fā)生的可能性越小,則它的概率越接近0.
統(tǒng)計(jì)初步的有關(guān)概念
總體:所要考查對(duì)象的全體叫總體;個(gè)體:總體中每一個(gè)考查對(duì)象.
樣本:從總體中所抽取的一部分個(gè)體叫總體的一個(gè)樣本.
樣本容量:樣本中個(gè)體的數(shù)目.
樣本平均數(shù):樣本中所有個(gè)體的平均數(shù)叫樣本平均數(shù).
總體平均數(shù):總體中所有個(gè)體的平均數(shù)叫做總體平均數(shù).
統(tǒng)計(jì)學(xué)中的基本思想就是用樣本對(duì)總體進(jìn)行估計(jì)、推斷,用樣本的平均水平、波動(dòng)情況、分布規(guī)律等特征估計(jì)總體的平均水平、波動(dòng)情況和分析規(guī)律.
【高中概率知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
初中概率應(yīng)用知識(shí)點(diǎn)總結(jié)09-09
頻率與概率總結(jié)06-01
高中力學(xué)知識(shí)點(diǎn)總結(jié)11-08
高中創(chuàng)新的知識(shí)點(diǎn)總結(jié)03-20
高中磁場(chǎng)知識(shí)點(diǎn)總結(jié)12-01
高中力學(xué)知識(shí)點(diǎn)總結(jié)03-21