最新高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)5篇分享
總結(jié)是在某一時(shí)期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評(píng)價(jià),從而得出教訓(xùn)和一些規(guī)律性認(rèn)識(shí)的一種書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運(yùn)用這些規(guī)律,為此要我們寫一份總結(jié)。那么總結(jié)要注意有什么內(nèi)容呢?以下是小編收集整理的最新高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)5篇分享,歡迎大家分享。
最新高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)5篇分享1
1、有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律——充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2、判定兩個(gè)平面平行的方法:
(1)根據(jù)定義——證明兩平面沒有公共點(diǎn);
(2)判定定理——證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3、兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:“兩平行平面沒有公共點(diǎn)”;
(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;
(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;
(5)夾在兩個(gè)平行平面間的平行線段相等;
(6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
最新高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)5篇分享2
不等式分類:
不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。一般地,用純粹的大于號(hào)、小于號(hào)“>”“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))“≥”(大于等于符號(hào))“≤”(小于等于符號(hào))連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號(hào)也可以為<,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問題。
最新高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)5篇分享3
(1)先看“充分條件和必要條件”
當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。但為什么說q是p的必要條件呢?事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對(duì)于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡(jiǎn)稱為p是q的充要條件。記作p<=>q
(3)定義與充要條件
數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對(duì)邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個(gè)四邊形為平行四邊形的充要條件是它的兩組對(duì)邊分別平行。
顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語句來表示。“充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”。“僅當(dāng)”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
最新高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)5篇分享4
考點(diǎn)一:集合與簡(jiǎn)易邏輯
集合部分一般以選擇題出現(xiàn),屬容易題。重點(diǎn)考查集合間關(guān)系的理解和認(rèn)識(shí)。近年的試題加強(qiáng)了對(duì)集合計(jì)算化簡(jiǎn)能力的考查,并向無限集發(fā)展,考查抽象思維能力。在解決這些問題時(shí),要注意利用幾何的直觀性,并注重集合表示方法的轉(zhuǎn)換與化簡(jiǎn)。簡(jiǎn)易邏輯考查有兩種形式:一是在選擇題和填空題中直接考查命題及其關(guān)系、邏輯聯(lián)結(jié)詞、“充要關(guān)系”、命題真?zhèn)蔚呐袛唷⑷Q命題和特稱命題的否定等,二是在解答題中深層次考查常用邏輯用語表達(dá)數(shù)學(xué)解題過程和邏輯推理。
考點(diǎn)二:函數(shù)與導(dǎo)數(shù)
函數(shù)是高考的重點(diǎn)內(nèi)容,以選擇題和填空題的為載體針對(duì)性考查函數(shù)的定義域與值域、函數(shù)的性質(zhì)、函數(shù)與方程、基本初等函數(shù)(一次和二次函數(shù)、指數(shù)、對(duì)數(shù)、冪函數(shù))的應(yīng)用等,分值約為10分,解答題與導(dǎo)數(shù)交匯在一起考查函數(shù)的性質(zhì)。導(dǎo)數(shù)部分一方面考查導(dǎo)數(shù)的運(yùn)算與導(dǎo)數(shù)的幾何意義,另一方面考查導(dǎo)數(shù)的簡(jiǎn)單應(yīng)用,如求函數(shù)的單調(diào)區(qū)間、極值與最值等,通常以客觀題的形式出現(xiàn),屬于容易題和中檔題,三是導(dǎo)數(shù)的綜合應(yīng)用,主要是和函數(shù)、不等式、方程等聯(lián)系在一起以解答題的形式出現(xiàn),如一些不等式恒成立問題、參數(shù)的取值范圍問題、方程根的個(gè)數(shù)問題、不等式的證明等問題。
考點(diǎn)三:三角函數(shù)與平面向量
一般是2道小題,1道綜合解答題。小題一道考查平面向量有關(guān)概念及運(yùn)算等,另一道對(duì)三角知識(shí)點(diǎn)的補(bǔ)充。大題中如果沒有涉及正弦定理、余弦定理的應(yīng)用,可能就是一道和解答題相互補(bǔ)充的三角函數(shù)的圖像、性質(zhì)或三角恒等變換的題目,也可能是考查平面向量為主的試題,要注意數(shù)形結(jié)合思想在解題中的應(yīng)用。向量重點(diǎn)考查平面向量數(shù)量積的概念及應(yīng)用,向量與直線、圓錐曲線、數(shù)列、不等式、三角函數(shù)等結(jié)合,解決角度、垂直、共線等問題是“新熱點(diǎn)”題型、
考點(diǎn)四:數(shù)列與不等式
不等式主要考查一元二次不等式的解法、一元二次不等式組和簡(jiǎn)單線性規(guī)劃問題、基本不等式的應(yīng)用等,通常會(huì)在小題中設(shè)置1到2道題。對(duì)不等式的工具性穿插在數(shù)列、解析幾何、函數(shù)導(dǎo)數(shù)等解答題中進(jìn)行考查、在選擇、填空題中考查等差或等比數(shù)列的概念、性質(zhì)、通項(xiàng)公式、求和公式等的靈活應(yīng)用,一道解答題大多凸顯以數(shù)列知識(shí)為工具,綜合運(yùn)用函數(shù)、方程、不等式等解決問題的能力,它們都屬于中、高檔題目、
考點(diǎn)五:立體幾何與空間向量
一是考查空間幾何體的結(jié)構(gòu)特征、直觀圖與三視圖;二是考查空間點(diǎn)、線、面之間的位置關(guān)系;三是考查利用空間向量解決立體幾何問題:利用空間向量證明線面平行與垂直、求空間角等(文科不要求)、在高考試卷中,一般有1~2個(gè)客觀題和一個(gè)解答題,多為中檔題。
考點(diǎn)六:解析幾何
一般有1~2個(gè)客觀題和1個(gè)解答題,其中客觀題主要考查直線斜率、直線方程、圓的方程、直線與圓的位置關(guān)系、圓錐曲線的定義應(yīng)用、標(biāo)準(zhǔn)方程的求解、離心率的計(jì)算等,解答題則主要考查直線與橢圓、拋物線等的位置關(guān)系問題,經(jīng)常與平面向量、函數(shù)與不等式交匯,考查一些存在性問題、證明問題、定點(diǎn)與定值、最值與范圍問題等。
考點(diǎn)七:算法復(fù)數(shù)推理與證明
高考對(duì)算法的考查以選擇題或填空題的形式出現(xiàn),或給解答題披層“外衣”、考查的熱點(diǎn)是流程圖的識(shí)別與算法語言的閱讀理解、算法與數(shù)列知識(shí)的網(wǎng)絡(luò)交匯命題是考查的主流、復(fù)數(shù)考查的重點(diǎn)是復(fù)數(shù)的有關(guān)概念、復(fù)數(shù)的'代數(shù)形式、運(yùn)算及運(yùn)算的幾何意義,一般是選擇題、填空題,難度不大、推理證明部分命題的方向主要會(huì)在函數(shù)、三角、數(shù)列、立體幾何、解析幾何等方面,單獨(dú)出題的可能性較小。對(duì)于理科,數(shù)學(xué)歸納法可能作為解答題的一小問、
最新高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)5篇分享5
一、充分條件和必要條件
當(dāng)命題“若A則B”為真時(shí),A稱為B的充分條件,B稱為A的必要條件。
二、充分條件、必要條件的常用判斷法
1、定義法:判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可
2、轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時(shí),可對(duì)命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷。
3、集合法
在命題的條件和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對(duì)應(yīng)的集合分別為A、B,則:
若A?B,則p是q的充分條件。
若A?B,則p是q的必要條件。
若A=B,則p是q的充要條件。
若A?B,且B?A,則p是q的既不充分也不必要條件。
三、知識(shí)擴(kuò)展
1、四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實(shí)際問題,理解其關(guān)系(尤其是兩種等價(jià)關(guān)系)的產(chǎn)生過程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:
(1)交換命題的條件和結(jié)論,所得的新命題就是原來命題的逆命題;
(2)同時(shí)否定命題的條件和結(jié)論,所得的新命題就是原來的否命題;
(3)交換命題的條件和結(jié)論,并且同時(shí)否定,所得的新命題就是原命題的逆否命題。
2、由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時(shí),可考慮“正難則反”的原則,即在正面判斷較難時(shí),可轉(zhuǎn)化為應(yīng)用該命題的逆否命題進(jìn)行判斷。一個(gè)結(jié)論成立的充分條件可以不止一個(gè),必要條件也可以不止一個(gè)。
【最新高三數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)歸納總結(jié)5篇分享】相關(guān)文章:
高三語文外國文學(xué)常識(shí)知識(shí)點(diǎn)復(fù)習(xí)歸納05-16
初三化學(xué)復(fù)習(xí)知識(shí)點(diǎn)的歸納總結(jié)11-30
語文《背影》知識(shí)點(diǎn)總結(jié)歸納12-07
高三數(shù)學(xué)復(fù)習(xí)意見指導(dǎo)12-12
高三數(shù)學(xué)學(xué)習(xí)方法整理歸納12-29
四年級(jí)數(shù)學(xué)單元復(fù)習(xí)知識(shí)點(diǎn)歸納(通用5篇)01-11
高三數(shù)學(xué)復(fù)習(xí)方法整理12-26
《觀潮》知識(shí)點(diǎn)歸納09-01