高二數(shù)學(xué)知識點總結(jié)精選15篇
總結(jié)是指社會團體、企業(yè)單位和個人在自身的某一時期、某一項目或某些工作告一段落或者全部完成后進行回顧檢查、分析評價,從而肯定成績,得到經(jīng)驗,找出差距,得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它可以提升我們發(fā)現(xiàn)問題的能力,讓我們好好寫一份總結(jié)吧。那么總結(jié)有什么格式呢?以下是小編精心整理的高二數(shù)學(xué)知識點總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。
高二數(shù)學(xué)知識點總結(jié)1
用樣本的數(shù)字特征估計總體的數(shù)字特征
1、本均值:
2、樣本標(biāo)準(zhǔn)差:
3.用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。
雖然我們用樣本數(shù)據(jù)得到的分布、均值和標(biāo)準(zhǔn)差并不是總體的真正的分布、均值和標(biāo)準(zhǔn)差,而只是一個估計,但這種估計是合理的,特別是當(dāng)樣本量很大時,它們確實反映了總體的信息。
4.(1)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一個共同的常數(shù),標(biāo)準(zhǔn)差不變
(2)如果把一組數(shù)據(jù)中的每一個數(shù)據(jù)乘以一個共同的常數(shù)k,標(biāo)準(zhǔn)差變?yōu)樵瓉淼膋倍
(3)一組數(shù)據(jù)中的值和最小值對標(biāo)準(zhǔn)差的影響,區(qū)間的應(yīng)用;
“去掉一個分,去掉一個最低分”中的科學(xué)道理
高二數(shù)學(xué)知識點總結(jié)2
●不等式
1、不等式你會解么?你會解么?如果是寫解集不要忘記寫成集合形式!
2、的解集是(1,3),那么的解集是什么?
3、兩類恒成立問題圖象法——恒成立,則=?
★★★★分離變量法——在[1,3]恒成立,則=?(必考題)
4、線性規(guī)劃問題
(1)可行域怎么作(一定要用直尺和鉛筆)定界——定域——邊界
(2)目標(biāo)函數(shù)改寫:(注意分析截距與z的關(guān)系)
(3)平行直線系去畫
5、基本不等式的形式和變形形式
如a,b為正數(shù),a,b滿足,則ab的范圍是
6、運用基本不等式求最值要注意:一正二定三相等!
如的最小值是的最小值(不要忘記交代是什么時候取到=!!)
一個非常重要的函數(shù)——對勾函數(shù)的圖象是什么?
運用對勾函數(shù)來處理下面問題的最小值是
7、★★兩種題型:
和——倒數(shù)和(1的代換),如x,y為正數(shù),且,求的最小值?
和——積(直接用基本不等式),如x,y為正數(shù),,則的范圍是?
不要忘記x,xy,x2+y2這三者的關(guān)系!如x,y為正數(shù),,則的范圍是?
高二數(shù)學(xué)知識點總結(jié)3
1.有向線段的定義
線段的端點A為始點,端點B為終點,這時線段AB具有射線AB的方向.像這樣,具有方向的線段叫做有向線段.記作:.
2.有向線段的三要素:有向線段包含三個要素:始點、方向和長度.
3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個要素:大小和方向.
(2)向量的表示方法:①用兩個大寫的英文字母及前頭表示,有向線段來表示向量時,也稱其為向量.書寫時,則用帶箭頭的小寫字母,,,來表示.
4.向量的長度(模):如果向量=,那么有向線段的長度表示向量的大小,叫做向量的長度(或模),記作||.
5.相等向量:如果兩個向量和的方向相同且長度相等,則稱和相等,記作:=.
6.相反向量:與向量等長且方向相反的向量叫做的相反向量,記作:-.
7.向量平行(共線):如果兩個向量方向相同或相反,則稱這兩個向量平行,向量平行也稱向量共線.向量平行于向量,記作//.規(guī)定: //.
8.零向量:長度等于零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由于零向量方向的特殊性,解答問題時,一定要看清題目中是零向量還是非零向量.
9.單位向量:長度等于1的向量叫做單位向量.
10.向量的加法運算:
(1)向量加法的三角形法則
11.向量的減法運算
12、兩向量的和差的模與兩向量模的和差之間的關(guān)系
對于任意兩個向量,,都有|||-|||||+||.
13.?dāng)?shù)乘向量的定義:
實數(shù)和向量的乘積是一個向量,這種運算叫做數(shù)乘向量,記作.
向量的長度與方向規(guī)定為:(1)||=|
(2)當(dāng)0時,與方向相同;當(dāng)0時,與方向相反.
(3)當(dāng)=0時,當(dāng)=時,=.
14.?dāng)?shù)乘向量的運算律:(1))= (結(jié)合律)
(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)
15.平行向量基本定理
如果向量,則//的充分必要條件是,存在唯一的實數(shù),使得=.
如果與不共線,若m=n,則m=n=0.
16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.
=||,即==(,)
17.線段中點的向量表達式
點M是線段AB的中點,O是平面內(nèi)任意一點,則=(+).
18.平面向量的直角坐標(biāo)運算:如果=(a1,a2),=(b1,b2),則
+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).
19.利用兩點表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).
20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則
=a1=b1且a2=b2.
//a1b2-a2b1=0.特別地,如果b10,b20,則// =.
21.向量的長度公式:若=(a1,a2),則||=.
22.平面上兩點間的距離公式:若A(x1,y1),B(x2,y2),則||=.
23.中點公式
若點A(x1,y1),點B(x2,y2),點M(x,y)是線段AB的中點,則x=,y= .
24.重心公式
在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則
x=,y=
25.(1)兩個向量夾角的取值范圍是[0,p],即0,p.
當(dāng)=0時,與同向;當(dāng)=p時,與反向
當(dāng)= 時,與垂直,記作.
(3)向量的內(nèi)積定義:=||||cos.
其中,||cos叫做向量在向量方向上的正射影的數(shù)量.規(guī)定=0.
(4)內(nèi)積的幾何意義
與的內(nèi)積的幾何意義是的模與在方向上的正射影的數(shù)量,或的模與在 方向上的正射影數(shù)量的乘積
當(dāng)0,90時,0;=90時,
90時,0.
26.向量內(nèi)積的運算律:
(1)交換率
(2)數(shù)乘結(jié)合律
(3)分配律
(4)不滿足組合律
27.向量內(nèi)積滿足乘法公式
29.向量內(nèi)積的應(yīng)用:
高二數(shù)學(xué)知識點總結(jié)4
排列組合
排列P------和順序有關(guān)
組合C-------不牽涉到順序的問題
排列分順序,組合不分
例如把5本不同的書分給3個人,有幾種分法."排列"
把5本書分給3個人,有幾種分法"組合"
1.排列及計算公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).
2.組合及計算公式
從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為
n!/(n1!_2!_.._k!).
k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).
排列(Pnm(n為下標(biāo),m為上標(biāo)))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n
組合(Cnm(n為下標(biāo),m為上標(biāo)))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m
20xx-07-0813:30
公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如9!=9________
從N倒數(shù)r個,表達式應(yīng)該為n_n-1)_n-2)..(n-r+1);
因為從n到(n-r+1)個數(shù)為n-(n-r+1)=r
高二數(shù)學(xué)知識點總結(jié)5
1.萬能公式令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2)
2.輔助角公式 asint+bcost=(a^2+b^2)^(1/2)sin(t+r) cosr=a/[(a^2+b^2)^(1/2)] sinr=b/[(a^2+b^2)^(1/2)] tanr=b/a
3.三倍角公式 sin(3a)=3sina-4(sina)^3 cos(3a)=4(cosa)^3-3cosa tan(3a)=[3tana-(tana)^3]/[1-3(tana^2)] sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2] 向量公式: 1.單位向量:單位向量a0=向量a/|向量a| 2.P(x,y) 那么 向量OP=x 向量i+y 向量j |向量OP|=根號(x 平方+y 平方) 3.P1(x1,y1) P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根號[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) 根號(x1平方+y1 平方)*根號(x2 平方+y2 平方)
5.空間向量:同上推論 (提示:向量a={x,y,z})
6.充要條件: 如果向量a向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2
7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2 向量a*向量b =(向量a向量b)平方
高二數(shù)學(xué)知識點總結(jié)6
高二年級數(shù)學(xué)必修二知識點總結(jié)
基本概念
公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上的所有的點都在這個平面內(nèi)。
公理2:如果兩個平面有一個公共點,那么它們有且只有一條通過這個點的公共直線。
公理3:過不在同一條直線上的三個點,有且只有一個平面。
推論1:經(jīng)過一條直線和這條直線外一點,有且只有一個平面。
推論2:經(jīng)過兩條相交直線,有且只有一個平面。
推論3:經(jīng)過兩條平行直線,有且只有一個平面。
公理4:平行于同一條直線的兩條直線互相平行。
等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等。
高二年級數(shù)學(xué)知識點
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp。空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp。空間向量法
若從有無公共點的角度看可分為兩類:
(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
①直線在平面內(nèi)——有無數(shù)個公共點
②直線和平面相交——有且只有一個公共點
直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時,所成的角為直角,b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點
直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。
高二數(shù)學(xué)重點知識點梳理
簡單隨機抽樣的定義:
一般地,設(shè)一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內(nèi)的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣。
簡單隨機抽樣的特點:
(1)用簡單隨機抽樣從含有N個個體的總體中抽取一個容量為n的樣本時,每次抽取一個個體時任一個體被抽到的概率為
;在整個抽樣過程中各個個體被抽到的概率為
(2)簡單隨機抽樣的特點是,逐個抽取,且各個個體被抽到的概率相等;
(3)簡單隨機抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。
(4)簡單隨機抽樣是不放回抽樣;它是逐個地進行抽取;它是一種等概率抽樣
簡單抽樣常用方法:
(1)抽簽法:先將總體中的所有個體(共有N個)編號(號碼可從1到N),并把號碼寫在形狀、大小相同的號簽上(號簽可用小球、卡片、紙條等制作),然后將這些號簽放在同一個箱子里,進行均勻攪拌,抽簽時每次從中抽一個號簽,連續(xù)抽取n次,就得到一個容量為n的樣本適用范圍:總體的個體數(shù)不多時優(yōu)點:抽簽法簡便易行,當(dāng)總體的個體數(shù)不太多時適宜采用抽簽法。
(2)隨機數(shù)表法:隨機數(shù)表抽樣“三步曲”:第一步,將總體中的個體編號;第二步,選定開始的數(shù)字;第三步,獲取樣本號碼概率。
高二數(shù)學(xué)知識點總結(jié)7
一、直線與圓:
1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。
3、直線方程:
(1)點斜式:直線過點斜率為,則直線方程為
(2)斜截式:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關(guān)系:
(1)平行A1/A2=B1/B2注意檢驗
(2)垂直A1A2+B1B2=0
5、點到直線的距離公式;
兩條平行線與的距離是
6、圓的標(biāo)準(zhǔn)方程:圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交
9、解決直線與圓的`關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
二、圓錐曲線方程:
1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;
2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2
3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準(zhǔn)線x=-;③焦半徑;焦點弦=x1+x2+p;
4、直線被圓錐曲線截得的弦長公式:
三、直線、平面、簡單幾何體:
1、學(xué)會三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);
(2)平行于x軸的線段長不變,平行于y軸的線段長減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
(1)柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
(2)錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
(3)臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
(4)球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
(1)異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
(2)直線與平面所成的角:直線與射影所成的角
四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)
1、導(dǎo)數(shù)的定義:在點處的導(dǎo)數(shù)記作.
2、導(dǎo)數(shù)的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;
⑤;⑥;⑦;⑧。
4.、導(dǎo)數(shù)的四則運算法則:
5、導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導(dǎo)數(shù);
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。
五、常用邏輯用語:
1、四種命題:
⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.
3、邏輯聯(lián)結(jié)詞:
(1)且(and):命題形式pq;pqpqpqp
(2)或(or):命題形式pq;真真真真假
(3)非(not):命題形式p.真假假真假
假真假真真
假假假假真
“或命題”的真假特點是“一真即真,要假全假”;
“且命題”的真假特點是“一假即假,要真全真”;
“非命題”的真假特點是“一真一假”
4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。
5、全稱命題與特稱命題:
短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。
短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。
高二數(shù)學(xué)知識點總結(jié)8
(一)解三角形:
1、正弦定理:在中,、、分別為角、、的對邊,,則有
(為的外接圓的半徑)
2、正弦定理的變形公式:①,,;
②,,;③;
3、三角形面積公式:.
4、余弦定理:在中,有,推論:
(二)數(shù)列:
1.數(shù)列的有關(guān)概念:
(1)數(shù)列:按照一定次序排列的一列數(shù)。數(shù)列是有序的。數(shù)列是定義在自然數(shù)N_它的有限子集{1,2,3,…,n}上的函數(shù)。
(2)通項公式:數(shù)列的第n項an與n之間的函數(shù)關(guān)系用一個公式來表示,這個公式即是該數(shù)列的通項公式。如:。
(3)遞推公式:已知數(shù)列{an}的第1項(或前幾項),且任一項an與他的前一項an-1(或前幾項)可以用一個公式來表示,這個公式即是該數(shù)列的遞推公式。
如:。
2.數(shù)列的表示方法:
(1)列舉法:如1,3,5,7,9,…(2)圖象法:用(n,an)孤立點表示。
(3)解析法:用通項公式表示。(4)遞推法:用遞推公式表示。
3.數(shù)列的分類:
4.數(shù)列{an}及前n項和之間的關(guān)系:
高二數(shù)學(xué)知識點總結(jié)9
考點一:求導(dǎo)公式。
例1.f(x)是f(x)13x2x1的導(dǎo)函數(shù),則f(1)的值是3
考點二:導(dǎo)數(shù)的幾何意義。
例2.已知函數(shù)yf(x)的圖象在點M(1,f(1))處的切線方程是y
1x2,則f(1)f(1)2
,3)處的切線方程是例3.曲線yx32x24x2在點(1
點評:以上兩小題均是對導(dǎo)數(shù)的幾何意義的考查。
考點三:導(dǎo)數(shù)的幾何意義的應(yīng)用。
例4.已知曲線C:yx33x22x,直線l:ykx,且直線l與曲線C相切于點x0,y0x00,求直線l的方程及切點坐標(biāo)。
點評:本小題考查導(dǎo)數(shù)幾何意義的應(yīng)用。解決此類問題時應(yīng)注意“切點既在曲線上又在切線上”這個條件的應(yīng)用。函數(shù)在某點可導(dǎo)是相應(yīng)曲線上過該點存在切線的充分條件,而不是必要條件。
考點四:函數(shù)的單調(diào)性。
例5.已知fxax3_1在R上是減函數(shù),求a的取值范圍。32
點評:本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用。對于高次函數(shù)單調(diào)性問題,要有求導(dǎo)意識。
考點五:函數(shù)的極值。
例6.設(shè)函數(shù)f(x)2x33ax23bx8c在x1及x2時取得極值。
(1)求a、b的值;
(2)若對于任意的x[0,3],都有f(x)c2成立,求c的取值范圍。
點評:本題考查利用導(dǎo)數(shù)求函數(shù)的極值。求可導(dǎo)函數(shù)fx的極值步驟:
①求導(dǎo)數(shù)f'x;
②求f'x0的根;③將f'x0的根在數(shù)軸上標(biāo)出,得出單調(diào)區(qū)間,由f'x在各區(qū)間上取值的正負(fù)可確定并求出函數(shù)fx的極值。
高二數(shù)學(xué)知識點總結(jié)10
(1)總體和樣本:
①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體.
②把每個研究對象叫做個體.
③把總體中個體的總數(shù)叫做總體容量.
④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機抽取一部分:x1,x2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.
(2)簡單隨機抽樣,也叫純隨機抽樣。
就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎(chǔ)。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。
(3)簡單隨機抽樣常用的方法:
①抽簽法
②隨機數(shù)表法
③計算機模擬法
在簡單隨機抽樣的樣本容量設(shè)計中,主要考慮:
①總體變異情況;
②允許誤差范圍;
③概率保證程度。
(4)抽簽法:
①給調(diào)查對象群體中的每一個對象編號;
②準(zhǔn)備抽簽的工具,實施抽簽;
③對樣本中的每一個個體進行測量或調(diào)查
高二數(shù)學(xué)知識點總結(jié)11
(1)必然事件:在條件S下,一定會發(fā)生的事件,叫相對于條件S的必然事件;
(2)不可能事件:在條件S下,一定不會發(fā)生的事件,叫相對于條件S的不可能事件;
(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件S的確定事件;
(4)隨機事件:在條件S下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件S的隨機事件;
(5)頻數(shù)與頻率:在相同的條件S下重復(fù)n次試驗,觀察某一事件A是否出現(xiàn),稱n次試驗中事件A出現(xiàn)的次數(shù)nA為事件A出現(xiàn)的頻數(shù);稱事件A出現(xiàn)的比例fn(A)=nnA為事件A出現(xiàn)的概率:對于給定的隨機事件A,如果隨著試驗次數(shù)的增加,事件A發(fā)生的頻率fn(A)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作P(A),稱為事件A的概率。
(6)頻率與概率的區(qū)別與聯(lián)系:隨機事件的頻率,指此事件發(fā)生的次數(shù)nA與試驗總次數(shù)n的比值nnA,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機事件的概率,概率從數(shù)量上反映了隨機事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗的前提下可以近似地作為這個事件的概率。
然說難度比較大,我建議考生,采取分部得分整個試
高二數(shù)學(xué)知識點總結(jié)12
一、不等式的性質(zhì)
1.兩個實數(shù)a與b之間的大小關(guān)系
2.不等式的性質(zhì)
(4) (乘法單調(diào)性)
3.絕對值不等式的性質(zhì)
(2)如果a>0,那么
(3)|ab|=|a||b|.
(5)|a|-|b|≤|a±b|≤|a|+|b|.
(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.
二、不等式的證明
1.不等式證明的依據(jù)
(2)不等式的性質(zhì)(略)
(3)重要不等式:①|(zhì)a|≥0;a2≥0;(a-b)2≥0(a、b∈R)
②a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)
2.不等式的證明方法
(1)比較法:要證明a>b(a<b),只要證明a-b>0(a-b<0),這種證明不等式的方法叫做比較法.
用比較法證明不等式的步驟是:作差——變形——判斷符號.
(2)綜合法:從已知條件出發(fā),依據(jù)不等式的性質(zhì)和已證明過的不等式,推導(dǎo)出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.
(3)分析法:從欲證的不等式出發(fā),逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.
證明不等式除以上三種基本方法外,還有反證法、數(shù)學(xué)歸納法等.
三、解不等式
1.解不等式問題的分類
(1)解一元一次不等式.
(2)解一元二次不等式.
(3)可以化為一元一次或一元二次不等式的不等式.
①解一元高次不等式;
②解分式不等式;
③解無理不等式;
④解指數(shù)不等式;
⑤解對數(shù)不等式;
⑥解帶絕對值的不等式;
⑦解不等式組.
2.解不等式時應(yīng)特別注意下列幾點:
(1)正確應(yīng)用不等式的基本性質(zhì).
(2)正確應(yīng)用冪函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)的增、減性.
(3)注意代數(shù)式中未知數(shù)的取值范圍.
3.不等式的同解性
(5)|f(x)|<g(x)與-g(x)<f(x)<g(x)同解.(g(x)>0)
(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(shù)(x)≥0)同解;②與g(x)<0同解.
(9)當(dāng)a>1時,af(x)>ag(x)與f(x)>g(x)同解,當(dāng)0<a<1時,af(x)>ag(x)與f(x)<g(x)同
高二數(shù)學(xué)知識點總結(jié)13
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結(jié)合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
3、數(shù)乘向量
實數(shù)λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當(dāng)λ>0時,λa與a同方向;
當(dāng)λ<0時,λa與a反方向;
當(dāng)λ=0時,λa=0,方向任意。
當(dāng)a=0時,對于任意實數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當(dāng)∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當(dāng)∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數(shù)與向量的乘法滿足下面的運算律
結(jié)合律:(λa)·b=λ(a·b)=(a·λb)。
向量對于數(shù)的分配律(第一分配律):(λ+μ)a=λa+μa.
數(shù)對于向量的分配律(第二分配律):λ(a+b)=λa+λb.
數(shù)乘向量的消去律:① 如果實數(shù)λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的數(shù)量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數(shù)量積(內(nèi)積、點積)是一個數(shù)量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數(shù)量積的坐標(biāo)表示:a·b=x·x'+y·y'。
向量的數(shù)量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數(shù)量積的性質(zhì)
a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
高二數(shù)學(xué)知識點總結(jié)14
平面向量
戴氏航天學(xué)校老師總結(jié)加法與減法的代數(shù)運算:
(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
戴氏航天學(xué)校老師總結(jié)向量加法有如下規(guī)律:+= +(交換律); +( +c)=( + )+c (結(jié)合律);
兩個向量共線的充要條件:
(1) 向量b與非零向量共線的充要條件是有且僅有一個實數(shù),使得b= .
(2) 若=(),b=()則‖b .
平面向量基本定理:
若e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量,戴氏航天學(xué)校老師提醒有且只 有一對實數(shù),,使得= e1+ e2
高二數(shù)學(xué)知識點總結(jié)15
1、學(xué)會三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。
3、表(側(cè))面積與體積公式:
⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
⑷球體:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)
⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;
⑵直線與平面所成的角:直線與射影所成的角
【高二數(shù)學(xué)知識點總結(jié)精選15篇】相關(guān)文章:
高二化學(xué)知識點總結(jié)05-04
高二物理知識點總結(jié)05-04
高二生物知識點總結(jié)05-08
高考數(shù)學(xué)知識點總結(jié)整理12-26
高二地理知識點總結(jié)07-22
八上數(shù)學(xué)知識點總結(jié)整理12-23