www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)

    時(shí)間:2022-03-27 19:29:33 總結(jié) 我要投稿

    初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)

      總結(jié)就是把一個(gè)時(shí)間段取得的成績(jī)、存在的問(wèn)題及得到的經(jīng)驗(yàn)和教訓(xùn)進(jìn)行一次全面系統(tǒng)的總結(jié)的書(shū)面材料,它能使我們及時(shí)找出錯(cuò)誤并改正,讓我們一起認(rèn)真地寫(xiě)一份總結(jié)吧。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?以下是小編收集整理的初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。

    初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)

    初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)1

      教學(xué)目標(biāo):

      (1)能夠根據(jù)實(shí)際問(wèn)題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

      (2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識(shí),培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

      教學(xué)重點(diǎn):能夠根據(jù)實(shí)際問(wèn)題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

      教學(xué)難點(diǎn):求出函數(shù)的自變量的取值范圍。

      教學(xué)過(guò)程:

      一、問(wèn)題引新

      1.設(shè)矩形花圃的垂直于墻(墻長(zhǎng)18)的一邊AB的長(zhǎng)為_(kāi)m,先取_的一些值,算出矩形的另一邊BC的長(zhǎng),進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫(xiě)在下表的空格中,

      AB長(zhǎng)_(m) 1 2 3 4 5 6 7 8 9

      BC長(zhǎng)(m) 12

      面積y(m2) 48

      2._的值是否可以任意取?有限定范圍嗎?

      3.我們發(fā)現(xiàn),當(dāng)AB的長(zhǎng)(_)確定后,矩形的面積(y)也隨之確定,y是_的函數(shù),試寫(xiě)出這個(gè)函數(shù)的關(guān)系式,教師可提出問(wèn)題,(1)當(dāng)AB=_m時(shí),BC長(zhǎng)等于多少m?(2)面積y等于多少? y=_(20-2_)

      二、提出問(wèn)題,解決問(wèn)題

      1、引導(dǎo)學(xué)生看書(shū)第二頁(yè)問(wèn)題一、二

      2、觀察概括

      y=6_2 d= n /2 (n-3) y= 20 (1-_)2

      以上函數(shù)關(guān)系式有什么共同特點(diǎn)? (都是含有二次項(xiàng))

      3、二次函數(shù)定義:形如y=a_2+b_+c(a、b、、c是常數(shù),a≠0)的函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

      4、課堂練習(xí)

      (1) (口答)下列函數(shù)中,哪些是二次函數(shù)?

      (1)y=5_+1 (2)y=4_2-1

      (3)y=2_3-3_2 (4)y=5_4-3_+1

      (2).P3練習(xí)第1,2題。

      五、小結(jié)敘述二次函數(shù)的定義.

      第二課時(shí):26.1二次函數(shù)(2)

      教學(xué)目標(biāo):

      1、使學(xué)生會(huì)用描點(diǎn)法畫(huà)出y=a_2的圖象,理解拋物線(xiàn)的有關(guān)概念。

      2、使學(xué)生經(jīng)歷、探索二次函數(shù)y=a_2圖象性質(zhì)的過(guò)程,培養(yǎng)學(xué)生觀察、思考、歸納的良好思維習(xí)慣。

      教學(xué)重點(diǎn):使學(xué)生理解拋物線(xiàn)的有關(guān)概念,會(huì)用描點(diǎn)法畫(huà)出二次函數(shù)y=a_2的圖象

      教學(xué)難點(diǎn):用描點(diǎn)法畫(huà)出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質(zhì)。

    初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)2

      I.定義與定義表達(dá)式

      一般地,自變量_和因變量y之間存在如下關(guān)系:y=a_^2+b_+c

      (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)則稱(chēng)y為_(kāi)的二次函數(shù)。

      二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

      II.二次函數(shù)的三種表達(dá)式

      一般式:y=a_^2+b_+c(a,b,c為常數(shù),a≠0)

      頂點(diǎn)式:y=a(_-h)^2+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

      交點(diǎn)式:y=a(_-_?)(_-_?)[僅限于與_軸有交點(diǎn)A(_?,0)和B(_?,0)的拋物線(xiàn)]

      注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

      h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

      III.二次函數(shù)的圖像

      在平面直角坐標(biāo)系中作出二次函數(shù)y=_^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。

      IV.拋物線(xiàn)的性質(zhì)

      1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)_=-b/2a。

      對(duì)稱(chēng)軸與拋物線(xiàn)的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)_=0)

      2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為:P(-b/2a,(4ac-b^2)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在_軸上。

      3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

      當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。|a|越大,則拋物線(xiàn)的開(kāi)口越小。

      4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

      當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;

      當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。

      5.常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。

      拋物線(xiàn)與y軸交于(0,c)

      6.拋物線(xiàn)與_軸交點(diǎn)個(gè)數(shù)

      Δ=b^2-4ac>0時(shí),拋物線(xiàn)與_軸有2個(gè)交點(diǎn)。

      Δ=b^2-4ac=0時(shí),拋物線(xiàn)與_軸有1個(gè)交點(diǎn)。

      Δ=b^2-4ac<0時(shí),拋物線(xiàn)與_軸沒(méi)有交點(diǎn)。

      _的取值是虛數(shù)(_=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

      V.二次函數(shù)與一元二次方程

      特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=a_^2+b_+c,

      當(dāng)y=0時(shí),二次函數(shù)為關(guān)于_的一元二次方程(以下稱(chēng)方程),即a_^2+b_+c=0

      此時(shí),函數(shù)圖像與_軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。函數(shù)與_軸交點(diǎn)的橫坐標(biāo)即為方程的根。

    初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)3

      當(dāng)h>0時(shí),y=a(_-h)^2的圖象可由拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位得到,

      當(dāng)h<0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到.

      當(dāng)h>0,k>0時(shí),將拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(_-h)^2+k的圖象;

      當(dāng)h>0,k<0時(shí),將拋物線(xiàn)y=a_^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

      當(dāng)h<0,k>0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

      當(dāng)h<0,k<0時(shí),將拋物線(xiàn)向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(_-h)^2+k的圖象;

      因此,研究拋物線(xiàn)y=a_^2+b_+c(a≠0)的圖象,通過(guò)配方,將一般式化為y=a(_-h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸,拋物線(xiàn)的大體位置就很清楚了.這給畫(huà)圖象提供了方便.

      2.拋物線(xiàn)y=a_^2+b_+c(a≠0)的圖象:當(dāng)a>0時(shí),開(kāi)口向上,當(dāng)a<0時(shí)開(kāi)口向下,對(duì)稱(chēng)軸是直線(xiàn)_=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b^2]/4a).

      3.拋物線(xiàn)y=a_^2+b_+c(a≠0),若a>0,當(dāng)_≤-b/2a時(shí),y隨_的增大而減小;當(dāng)_≥-b/2a時(shí),y隨_的增大而增大.若a<0,當(dāng)_≤-b/2a時(shí),y隨_的增大而增大;當(dāng)_≥-b/2a時(shí),y隨_的增大而減小.

      4.拋物線(xiàn)y=a_^2+b_+c的圖象與坐標(biāo)軸的交點(diǎn):

      (1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);

      (2)當(dāng)△=b^2-4ac>0,圖象與_軸交于兩點(diǎn)A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

      (a≠0)的兩根.這兩點(diǎn)間的距離AB=|_?-_?|

      當(dāng)△=0.圖象與_軸只有一個(gè)交點(diǎn);

      當(dāng)△<0.圖象與_軸沒(méi)有交點(diǎn).當(dāng)a>0時(shí),圖象落在_軸的上方,_為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在_軸的下方,_為任何實(shí)數(shù)時(shí),都有y<0.

      5.拋物線(xiàn)y=a_^2+b_+c的最值:如果a>0(a<0),則當(dāng)_=-b/2a時(shí),y最小(大)值=(4ac-b^2)/4a.

      頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值.

      6.用待定系數(shù)法求二次函數(shù)的解析式

      (1)當(dāng)題給條件為已知圖象經(jīng)過(guò)三個(gè)已知點(diǎn)或已知_、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:

      y=a_^2+b_+c(a≠0).

      (2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ(chēng)軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(_-h)^2+k(a≠0).

      (3)當(dāng)題給條件為已知圖象與_軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

      7.二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn).

    初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)4

      一、基本概念

      1.方程、方程的解(根)、方程組的解、解方程(組)

      2.分類(lèi):

      二、解方程的依據(jù)—等式性質(zhì)

      1.a=b←→a+c=b+c

      2.a=b←→ac=bc (c≠0)

      三、解法

      1.一元一次方程的解法:去分母→去括號(hào)→移項(xiàng)→合并同類(lèi)項(xiàng)→

      系數(shù)化成1→解。

      2.元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

      ②加減法

      四、一元二次方程

      1.定義及一般形式:

      2.解法:⑴直接開(kāi)平方法(注意特征)

      ⑵配方法(注意步驟—推倒求根公式)

      ⑶公式法:

      ⑷因式分解法(特征:左邊=0)

      3.根的判別式:

      4.根與系數(shù)頂?shù)年P(guān)系:

      逆定理:若,則以為根的一元二次方程是:。

      5.常用等式:

      五、可化為一元二次方程的方程

      1.分式方程

      ⑴定義

      ⑵基本思想:

      ⑶基本解法:①去分母法②換元法(如,)

      ⑷驗(yàn)根及方法

      2.無(wú)理方程

      ⑴定義

      ⑵基本思想:

      ⑶基本解法:①乘方法(注意技巧!!)②換元法(例,)⑷驗(yàn)根及方法

      3.簡(jiǎn)單的二元二次方程組

      由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。

      六、列方程(組)解應(yīng)用題

      一概述

      列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的'一個(gè)重要方面。其具體步驟是:

      ⑴審題。理解題意。弄清問(wèn)題中已知量是什么,未知量是什么,問(wèn)題給出和涉及的相等關(guān)系是什么。

      ⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來(lái)說(shuō),未知數(shù)越多,方程越易列,但越難解。

      ⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。

      ⑷尋找相等關(guān)系(有的由題目給出,有的由該問(wèn)題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。

      ⑸解方程及檢驗(yàn)。

      ⑹答案。

      綜上所述,列方程(組)解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題(設(shè)元、列方程),在由數(shù)學(xué)問(wèn)題的解決而導(dǎo)致實(shí)際問(wèn)題的解決(列方程、寫(xiě)出答案)。在這個(gè)過(guò)程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

      二常用的相等關(guān)系

      1.行程問(wèn)題(勻速運(yùn)動(dòng))

      基本關(guān)系:s=vt

      ⑴相遇問(wèn)題(同時(shí)出發(fā)):

      + = ;

      ⑵追及問(wèn)題(同時(shí)出發(fā)):

      若甲出發(fā)t小時(shí)后,乙才出發(fā),而后在B處追上甲,則

      ⑶水中航行:;

      2.配料問(wèn)題:溶質(zhì)=溶液_濃度

      溶液=溶質(zhì)+溶劑

      3.增長(zhǎng)率問(wèn)題:

      4.工程問(wèn)題:基本關(guān)系:工作量=工作效率_工作時(shí)間(常把工作量看著單位“1”)。

      5.幾何問(wèn)題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。

    初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)5

      計(jì)算方法

      1.樣本平均數(shù):

      2.樣本方差:

      3.樣本標(biāo)準(zhǔn)差:

      相交線(xiàn)與平行線(xiàn)、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。

      內(nèi)容提要

      一、直線(xiàn)、相交線(xiàn)、平行線(xiàn)

      1.線(xiàn)段、射線(xiàn)、直線(xiàn)三者的區(qū)別與聯(lián)系

      從“圖形”、“表示法”、“界限”、“端點(diǎn)個(gè)數(shù)”、“基本性質(zhì)”等方面加以分析。

      2.線(xiàn)段的中點(diǎn)及表示

      3.直線(xiàn)、線(xiàn)段的基本性質(zhì)(用“線(xiàn)段的基本性質(zhì)”論證“三角形兩邊之和大于第三邊”)

      4.兩點(diǎn)間的距離(三個(gè)距離:點(diǎn)-點(diǎn);點(diǎn)-線(xiàn);線(xiàn)-線(xiàn))

      5.角(平角、周角、直角、銳角、鈍角)

      6.互為余角、互為補(bǔ)角及表示方法

      7.角的平分線(xiàn)及其表示

      8.垂線(xiàn)及基本性質(zhì)(利用它證明“直角三角形中斜邊大于直角邊”)

      9.對(duì)頂角及性質(zhì)

      10.平行線(xiàn)及判定與性質(zhì)(互逆)(二者的區(qū)別與聯(lián)系)

      11.常用定理:①同平行于一條直線(xiàn)的兩條直線(xiàn)平行(傳遞性);②同垂直于一條直線(xiàn)的兩條直線(xiàn)平行。

      12.定義、命題、命題的組成

      13.公理、定理

      14.逆命題

      二、三角形

      分類(lèi):

      ⑴按邊分;

      ⑵按角分

      1.定義(包括內(nèi)、外角)

      2.三角形的邊角關(guān)系:⑴角與角:①內(nèi)角和及推論;②外角和;③n邊形內(nèi)角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大于第三邊,兩邊之差小于第三邊。⑶角與邊:在同一三角形中,

      3.三角形的主要線(xiàn)段

      討論:①定義②__線(xiàn)的交點(diǎn)—三角形的_心③性質(zhì)

      ①高線(xiàn)②中線(xiàn)③角平分線(xiàn)④中垂線(xiàn)⑤中位線(xiàn)

      ⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

      4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質(zhì)

      5.全等三角形

      ⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

      ⑵特殊三角形全等的判定:①一般方法②專(zhuān)用方法

      6.三角形的面積

      ⑴一般計(jì)算公式⑵性質(zhì):等底等高的三角形面積相等。

      7.重要輔助線(xiàn)

      ⑴中點(diǎn)配中點(diǎn)構(gòu)成中位線(xiàn);⑵加倍中線(xiàn);⑶添加輔助平行線(xiàn)

      8.證明方法

      ⑴直接證法:綜合法、分析法

      ⑵間接證法—反證法:①反設(shè)②歸謬③結(jié)論

      ⑶證線(xiàn)段相等、角相等常通過(guò)證三角形全等

      ⑷證線(xiàn)段倍分關(guān)系:加倍法、折半法

      ⑸證線(xiàn)段和差關(guān)系:延結(jié)法、截余法

      ⑹證面積關(guān)系:將面積表示出來(lái)

      三、四邊形

      分類(lèi)表:

      1.一般性質(zhì)(角)

      ⑴內(nèi)角和:360°

      ⑵順次連結(jié)各邊中點(diǎn)得平行四邊形。

      推論1:順次連結(jié)對(duì)角線(xiàn)相等的四邊形各邊中點(diǎn)得菱形。

      推論2:順次連結(jié)對(duì)角線(xiàn)互相垂直的四邊形各邊中點(diǎn)得矩形。

      ⑶外角和:360°

      2.特殊四邊形

      ⑴研究它們的一般方法:

      ⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定

      ⑶判定步驟:四邊形→平行四邊形→矩形→正方形

      菱形

      ⑷對(duì)角線(xiàn)的紐帶作用:

      3.對(duì)稱(chēng)圖形

      ⑴軸對(duì)稱(chēng)(定義及性質(zhì));⑵中心對(duì)稱(chēng)(定義及性質(zhì))

      4.有關(guān)定理:①平行線(xiàn)等分線(xiàn)段定理及其推論1、2

      ②三角形、梯形的中位線(xiàn)定理

      ③平行線(xiàn)間的距離處處相等。(如,找下圖中面積相等的三角形)

      5.重要輔助線(xiàn):①常連結(jié)四邊形的對(duì)角線(xiàn);②梯形中常“平移一腰”、“平移對(duì)角線(xiàn)”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。

      6.作圖:任意等分線(xiàn)段。

    【初中九年級(jí)二次函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:

    二次函數(shù)說(shuō)課稿02-17

    二次函數(shù)的圖像說(shuō)課稿11-04

    二次函數(shù)超級(jí)經(jīng)典課件教案05-13

    二次函數(shù)說(shuō)課稿(11篇)02-17

    二次函數(shù)說(shuō)課稿11篇11-15

    數(shù)學(xué)二次函數(shù)復(fù)習(xí)資料08-27

    二次函數(shù)測(cè)試題的整理08-20

    初中數(shù)學(xué)《二次根式》優(yōu)秀教案設(shè)計(jì)03-16

    初中物理易錯(cuò)知識(shí)點(diǎn)11-10

    初中物理常用的知識(shí)點(diǎn)11-10

    97美女超碰精品国产| 樱桃视频大全免费高清版观看| 久久久久久久精品免费久精品蜜桃| 国产国产精品人在线视| 亚洲欧美日韩国产精品一区二区| 国产人成91精品免费观看| 国产a久久精品一区二区三区| 无码a精品v一区二区三区| 成全免费高清观看在线电视剧| WWW免费视频在线观看播放|