www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    高中數(shù)學(xué)必修三知識點總結(jié)

    時間:2022-06-17 14:25:03 總結(jié) 我要投稿

    高中數(shù)學(xué)必修三知識點總結(jié)

      在平凡的學(xué)習(xí)生活中,大家最不陌生的就是知識點吧!知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。哪些才是我們真正需要的知識點呢?下面是小編幫大家整理的高中數(shù)學(xué)必修三知識點總結(jié),僅供參考,歡迎大家閱讀。

    高中數(shù)學(xué)必修三知識點總結(jié)

      高中數(shù)學(xué)必修三知識點總結(jié) 篇1

      總體和樣本

      ①在統(tǒng)計學(xué)中,把研究對象的全體叫做總體。

      ②把每個研究對象叫做個體。

      ③把總體中個體的總數(shù)叫做總體容量。

      ④為了研究總體的有關(guān)性質(zhì),一般從總體中隨機(jī)抽取一部分:x1,x2,……,x-x研究,我們稱它為樣本。其中個體的個數(shù)稱為樣本容量。

      簡單隨機(jī)抽樣

      也叫純隨機(jī)抽樣。就是從總體中不加任何分組、劃類、排隊等,完全隨。

      機(jī)地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關(guān)聯(lián)性和排斥性。簡單隨機(jī)抽樣是其它各種抽樣形式的基礎(chǔ),高三。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

      簡單隨機(jī)抽樣常用的方法

      ①抽簽法

      ②隨機(jī)數(shù)表法

      ③計算機(jī)模擬法

      ④使用統(tǒng)計軟件直接抽取。

      在簡單隨機(jī)抽樣的樣本容量設(shè)計中,主要考慮:

      ①總體變異情況;

      ②允許誤差范圍;

      ③概率保證程度。

      抽簽法

      ①給調(diào)查對象群體中的每一個對象編號;

      ②準(zhǔn)備抽簽的工具,實施抽簽;

      ③對樣本中的每一個個體進(jìn)行測量或調(diào)查。

      高中數(shù)學(xué)必修三知識點總結(jié) 篇2

      一、直線與方程高考考試內(nèi)容及考試要求:

      考試內(nèi)容:

      1.直線的傾斜角和斜率;直線方程的點斜式和兩點式;直線方程的一般式;

      2.兩條直線平行與垂直的條件;兩條直線的交角;點到直線的距離;

      考試要求:

      1.理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程;

      2.掌握兩條直線平行與垂直的條件,兩條直線所成的角和點到直線的距離公式能夠根據(jù)直線的方程判斷兩條直線的位置關(guān)系;

      二、直線與方程

      課標(biāo)要求:

      1.在平面直角坐標(biāo)系中,結(jié)合具體圖形,探索確定直線位置的幾何要素;

      2.理解直線的傾斜角和斜率的概念,經(jīng)歷用代數(shù)方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式;

      3.根據(jù)確定直線位置的幾何要素,探索并掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函數(shù)的關(guān)系;

      4.會用代數(shù)的方法解決直線的有關(guān)問題,包括求兩直線的交點,判斷兩條直線的位置關(guān)系,求兩點間的距離、點到直線的距離以及兩條平行線之間的距離等。

      要點精講:

      1.直線的傾斜角:當(dāng)直線l與x軸相交時,取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角。特別地,當(dāng)直線l與x軸平行或重合時,規(guī)定α= 0°.

      傾斜角α的取值范圍:0°≤α<180°. 當(dāng)直線l與x軸垂直時, α= 90°.

      2.直線的斜率:一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k = tanα

      (1)當(dāng)直線l與x軸平行或重合時,α=0°,k = tan0°=0;

      (2)當(dāng)直線l與x軸垂直時,α= 90°,k 不存在。

      由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在。

      3.過兩點p1(x1,y1),p2(x2,y2)(x1≠x2)的直線的斜率公式:

      (若x1=x2,則直線p1p2的斜率不存在,此時直線的傾斜角為90°)。

      4.兩條直線的平行與垂直的判定

      (1)若l1,l2均存在斜率且不重合:

      ①;②

      注: 上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結(jié)論并不成立。

      (2)

      若A1、A2、B1、B2都不為零。

      注意:若A2或B2中含有字母,應(yīng)注意討論字母=0與0的情況。

      兩條直線的交點:兩條直線的交點的個數(shù)取決于這兩條直線的方程組成的方程組的解的個數(shù)。

      5.直線方程的五種形式

      確定直線方程需要有兩個互相獨立的條件,確定直線方程的形式很多,但必須注意各種形式的直線方程的適用范圍。

      直線的點斜式與斜截式不能表示斜率不存在(垂直于x 軸)的直線;兩點式不能表示平行或重合兩坐標(biāo)軸的直線;截距式不能表示平行或重合兩坐標(biāo)軸的直線及過原點的直線。

      6.直線的交點坐標(biāo)與距離公式

      (1)兩直線的交點坐標(biāo)

      一般地,將兩條直線的方程聯(lián)立,得方程組

      若方程組有唯一解,則兩條直線相交,解即為交點的坐標(biāo);若方程組無解,則兩條直線無公共點,此時兩條直線平行。

      (2)兩點間距離

      兩點P1(x1,y1),P2(x2,y2)間的距離公式

      特別地:軸,則、軸,則

      (3)點到直線的距離公式

      點到直線的距離為:

      (4)兩平行線間的距離公式:

      若,則:

      注意點:x,y對應(yīng)項系數(shù)應(yīng)相等。

      高中數(shù)學(xué)必修三知識點總結(jié) 篇3

      空間兩條直線只有三種位置關(guān)系:平行、相交、異面

      1、按是否共面可分為兩類:

      (1)共面:平行、相交

      (2)異面:

      異面直線的定義:不同在任何一個平面內(nèi)的兩條直線或既不平行也不相交。

      異面直線判定定理:用平面內(nèi)一點與平面外一點的直線,與平面內(nèi)不經(jīng)過該點的直線是異面直線。

      兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法

      兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法

      2、若從有無公共點的角度看可分為兩類:

      (1)有且僅有一個公共點——相交直線;

      (2)沒有公共點——平行或異面

      直線和平面的位置關(guān)系:

      直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行

      ①直線在平面內(nèi)——有無數(shù)個公共點

      ②直線和平面相交——有且只有一個公共點

      直線與平面所成的角:平面的一條斜線和它在這個平面內(nèi)的射影所成的銳角。

      高中數(shù)學(xué)必修三知識點總結(jié) 篇4

      一、平面的基本性質(zhì)與推論

      1、平面的基本性質(zhì):

      公理1如果一條直線的兩點在一個平面內(nèi),那么這條直線在這個平面內(nèi);

      公理2過不在一條直線上的三點,有且只有一個平面;

      公理3如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

      2、空間點、直線、平面之間的位置關(guān)系:

      直線與直線—平行、相交、異面;

      直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);

      平面與平面—平行、相交。

      3、異面直線:

      平面外一點A與平面一點B的連線和平面內(nèi)不經(jīng)過點B的直線是異面直線(判定);

      所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);

      兩條直線不是異面直線,則兩條直線平行或相交(反證);

      異面直線不同在任何一個平面內(nèi)。

      求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角

      二、空間中的平行關(guān)系

      1、直線與平面平行(核心)

      定義:直線和平面沒有公共點

      判定:不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)

      性質(zhì):一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,則這條直線就和兩平面的交線平行

      2、平面與平面平行

      定義:兩個平面沒有公共點

      判定:一個平面內(nèi)有兩條相交直線平行于另一個平面,則這兩個平面平行

      性質(zhì):兩個平面平行,則其中一個平面內(nèi)的直線平行于另一個平面;如果兩個平行平面同時與第三個平面相交,那么它們的交線平行。

      3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線

      三、空間中的垂直關(guān)系

      1、直線與平面垂直

      定義:直線與平面內(nèi)任意一條直線都垂直

      判定:如果一條直線與一個平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直

      性質(zhì):垂直于同一直線的兩平面平行

      推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

      直線和平面所成的角:【0,90】度,平面內(nèi)的一條斜線和它在平面內(nèi)的射影說成的銳角,特別規(guī)定垂直90度,在平面內(nèi)或者平行0度

      2、平面與平面垂直

      定義:兩個平面所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內(nèi)分別作垂直于棱的兩條射線所成的角)

      判定:一個平面過另一個平面的垂線,則這兩個平面垂直

      性質(zhì):兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直

      高中數(shù)學(xué)必修三知識點總結(jié) 篇5

      一、早期導(dǎo)數(shù)概念——特殊的形式大約在1629年法國數(shù)學(xué)家費馬研究了作曲線的切線和求函數(shù)極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構(gòu)造了差分f(A+E)—f(A),發(fā)現(xiàn)的因子E就是我們所說的導(dǎo)數(shù)f(A)。

      二、17世紀(jì)——廣泛使用的“流數(shù)術(shù)”17世紀(jì)生產(chǎn)力的發(fā)展推動了自然科學(xué)和技術(shù)的發(fā)展在前人創(chuàng)造性研究的基礎(chǔ)上大數(shù)學(xué)家牛頓、萊布尼茨等從不同的角度開始系統(tǒng)地研究微積分。牛頓的微積分理論被稱為“流數(shù)術(shù)”他稱變量為流量稱變量的變化率為流數(shù)相當(dāng)于我們所說的導(dǎo)數(shù)。牛頓的有關(guān)“流數(shù)術(shù)”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數(shù)術(shù)和無窮級數(shù)》流數(shù)理論的實質(zhì)概括為他的重點在于一個變量的函數(shù)而不在于多變量的方程在于自變量的變化與函數(shù)的變化的比的構(gòu)成最在于決定這個比當(dāng)變化趨于零時的極限。

      三、19世紀(jì)導(dǎo)數(shù)——逐漸成熟的理論1750年達(dá)朗貝爾在為法國科學(xué)家院出版的《百科全書》第五版寫的“微分”條目中提出了關(guān)于導(dǎo)數(shù)的一種觀點可以用現(xiàn)代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導(dǎo)數(shù)如果函數(shù)y=f(x)在變量x的兩個給定的界限之間保持連續(xù)并且我們?yōu)檫@樣的變量指定一個包含在這兩個不同界限之間的值那么是使變量得到一個無窮小增量。19世紀(jì)60年代以后魏爾斯特拉斯創(chuàng)造了ε—δ語言對微積分中出現(xiàn)的各種類型的極限重加表達(dá)導(dǎo)數(shù)的定義也就獲得了今天常見的形式。

      四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學(xué)理論基礎(chǔ)大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態(tài)上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年后來極限論就是現(xiàn)在所使用的。光是電磁波還是粒子是一個物理學(xué)長期爭論的問題后來由波粒二象性來統(tǒng)一。微積分無論是用現(xiàn)代極限論還是150年前的理論都不是最好的手段。

      高中數(shù)學(xué)必修三知識點總結(jié) 篇6

      一、求導(dǎo)數(shù)的方法

      (1)基本求導(dǎo)公式

      (2)導(dǎo)數(shù)的四則運算

      (3)復(fù)合函數(shù)的導(dǎo)數(shù)

      設(shè)在點x處可導(dǎo),y=在點處可導(dǎo),則復(fù)合函數(shù)在點x處可導(dǎo),且即

      二、關(guān)于極限

      1、數(shù)列的極限:

      粗略地說,就是當(dāng)數(shù)列的項n無限增大時,數(shù)列的項無限趨向于A,這就是數(shù)列極限的描述性定義。記作:=A。如:

      2、函數(shù)的極限:

      當(dāng)自變量x無限趨近于常數(shù)時,如果函數(shù)無限趨近于一個常數(shù),就說當(dāng)x趨近于時,函數(shù)的極限是,記作

      三、導(dǎo)數(shù)的概念

      1、在處的導(dǎo)數(shù)。

      2、在的導(dǎo)數(shù)。

      3、函數(shù)在點處的導(dǎo)數(shù)的幾何意義:

      函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,

      即k=,相應(yīng)的切線方程是

      注:函數(shù)的導(dǎo)函數(shù)在時的函數(shù)值,就是在處的導(dǎo)數(shù)。

      例、若=2,則=()A—1B—2C1D

      四、導(dǎo)數(shù)的綜合運用

      (一)曲線的切線

      函數(shù)y=f(x)在點處的`導(dǎo)數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:

      (1)求出函數(shù)y=f(x)在點處的導(dǎo)數(shù),即曲線y=f(x)在點處的切線的斜率k=

      (2)在已知切點坐標(biāo)和切線斜率的條件下,求得切線方程為x。

      高中數(shù)學(xué)必修三知識點總結(jié) 篇7

      (一)導(dǎo)數(shù)第一定義

      設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有增量 △x ( x0 + △x 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)取得增量 △y = f(x0 + △x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即導(dǎo)數(shù)第一定義

      (二)導(dǎo)數(shù)第二定義

      設(shè)函數(shù) y = f(x) 在點 x0 的某個領(lǐng)域內(nèi)有定義,當(dāng)自變量 x 在 x0 處有變化 △x ( x - x0 也在該鄰域內(nèi) ) 時,相應(yīng)地函數(shù)變化 △y = f(x) - f(x0) ;如果 △y 與 △x 之比當(dāng) △x→0 時極限存在,則稱函數(shù) y = f(x) 在點 x0 處可導(dǎo),并稱這個極限值為函數(shù) y = f(x) 在點 x0 處的導(dǎo)數(shù)記為 f'(x0) ,即 導(dǎo)數(shù)第二定義

      (三)導(dǎo)函數(shù)與導(dǎo)數(shù)

      如果函數(shù) y = f(x) 在開區(qū)間 I 內(nèi)每一點都可導(dǎo),就稱函數(shù)f(x)在區(qū)間 I 內(nèi)可導(dǎo)。這時函數(shù) y = f(x) 對于區(qū)間 I 內(nèi)的每一個確定的 x 值,都對應(yīng)著一個確定的導(dǎo)數(shù),這就構(gòu)成一個新的函數(shù),稱這個函數(shù)為原來函數(shù) y = f(x) 的導(dǎo)函數(shù),記作 y', f'(x), dy/dx, df(x)/dx。導(dǎo)函數(shù)簡稱導(dǎo)數(shù)。

      (四)單調(diào)性及其應(yīng)用

      1.利用導(dǎo)數(shù)研究多項式函數(shù)單調(diào)性的一般步驟

      (1)求f(x)

      (2)確定f(x)在(a,b)內(nèi)符號 (3)若f(x)>0在(a,b)上恒成立,則f(x)在(a,b)上是增函數(shù);若f(x)<0在(a,b)上恒成立,則f(x)在(a,b)上是減函數(shù)

      2.用導(dǎo)數(shù)求多項式函數(shù)單調(diào)區(qū)間的一般步驟

      (1)求f(x)

      (2)f(x)>0的解集與定義域的交集的對應(yīng)區(qū)間為增區(qū)間; f(x)<0的解集與定義域的交集的對應(yīng)區(qū)間為減區(qū)間

      學(xué)習(xí)了導(dǎo)數(shù)基礎(chǔ)知識點,接下來可以學(xué)習(xí)高二數(shù)學(xué)中涉及到的導(dǎo)數(shù)應(yīng)用的部分。

      高中數(shù)學(xué)必修三知識點總結(jié) 篇8

      一、高中數(shù)列基本公式:

      1、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an=

      2、等差數(shù)列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當(dāng)d≠0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。

      3、等差數(shù)列的前n項和公式:Sn=

      Sn=

      Sn=

      當(dāng)d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當(dāng)d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。

      4、等比數(shù)列的通項公式: an= a1qn-1an= akqn-k

      (其中a1為首項、ak為已知的第k項,an≠0)

      5、等比數(shù)列的前n項和公式:當(dāng)q=1時,Sn=n a1 (是關(guān)于n的正比例式);

      當(dāng)q≠1時,Sn=

      Sn=

      二、高中數(shù)學(xué)中有關(guān)等差、等比數(shù)列的結(jié)論

      1、等差數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數(shù)列。

      2、等差數(shù)列{an}中,若m+n=p+q,則

      3、等比數(shù)列{an}中,若m+n=p+q,則

      4、等比數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數(shù)列。

      5、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。

      6、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列仍為等比數(shù)列。

      7、等差數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。

      8、等比數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。

      9、三個數(shù)成等差數(shù)列的設(shè)法:a-d,a,a+d;四個數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d

      10、三個數(shù)成等比數(shù)列的設(shè)法:a/q,a,aq;

      四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)

      高中數(shù)學(xué)必修三知識點總結(jié) 篇9

      軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

      一、求動點的軌跡方程的基本步驟。

      1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);

      2、寫出點M的集合;

      3、列出方程=0;

      4、化簡方程為最簡形式;

      5、檢驗。

      二、求動點的軌跡方程的常用方法:

      求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

      1、直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

      2、定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

      3、相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

      4、參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

      5、交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

      求動點軌跡方程的一般步驟:

      ①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

      ②設(shè)點——設(shè)軌跡上的任一點P(x,y);

      ③列式——列出動點p所滿足的關(guān)系式;

      ④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

      ⑤證明——證明所求方程即為符合條件的動點軌跡方程。

      高中數(shù)學(xué)必修三知識點總結(jié) 篇10

      (1)不等關(guān)系

      感受在現(xiàn)實世界和日常生活中存在著大量的不等關(guān)系,了解不等式(組)的實際背景。

      (2)一元二次不等式

      ①經(jīng)歷從實際情境中抽象出一元二次不等式模型的過程。

      ②通過函數(shù)圖象了解一元二次不等式與相應(yīng)函數(shù)、方程的聯(lián)系。

      ③會解一元二次不等式,對給定的一元二次不等式,嘗試設(shè)計求解的程序框圖。

      (3)二元一次不等式組與簡單線性規(guī)劃問題

      ①從實際情境中抽象出二元一次不等式組。

      ②了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組(參見例2)。

      ③從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決(參見例3)。

      (4)基本不等式

      ①探索并了解基本不等式的證明過程。

      ②會用基本不等式解決簡單的(小)值問題。

    【高中數(shù)學(xué)必修三知識點總結(jié)】相關(guān)文章:

    高中數(shù)學(xué)必修二知識點總結(jié)02-24

    高中數(shù)學(xué)知識點必修總結(jié)01-26

    高中數(shù)學(xué)必修二知識點總結(jié)12-07

    高中數(shù)學(xué)必修四知識點總結(jié)12-03

    英語必修三知識點總結(jié)12-29

    地理必修三知識點總結(jié)03-30

    必修三英語知識點總結(jié)03-30

    高三語文必修三知識點總結(jié)02-25

    必修三數(shù)學(xué)知識點總結(jié)09-27

    国产一区二区在线视频| 97国产精华最好的产品亚洲| 日韩精品中文字幕一区二区三区| 成全的免费视频高清观看| 国产午夜欧美忘忧草| 国产成人AAAAA级毛片| JAPANESEHD熟女熟妇伦| 一起看在线观看免费| 尤物蜜芽视频在线观看国产| 国产欧美日韩精品专区|