www.oingaieng.cn-国产成人精品免费视频大全,中文字幕无码不卡免费视频 ,777精品久无码人妻蜜桃,国产一级A毛久久久久一级A看免费视频

    歡迎來(lái)到瑞文網(wǎng)!

    高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié)

    學(xué)習(xí)總結(jié) 時(shí)間:2017-05-30 我要投稿
    【www.oingaieng.cn - 學(xué)習(xí)總結(jié)】

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):銳角三角函數(shù)公式

      sin α=∠α的對(duì)邊 / 斜邊

      cos α=∠α的鄰邊 / 斜邊

      tan α=∠α的對(duì)邊 / ∠α的鄰邊

      cot α=∠α的鄰邊 / ∠α的對(duì)邊

      倍角公式

      Sin2A=2SinA?CosA

      Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

      tan2A=(2tanA)/(1-tanA^2)

      (注:SinA^2 是sinA的平方 sin2(A) )

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):三倍角公式

      sin3α=4sinα·sin(π/3+α)sin(π/3-α)

      cos3α=4cosα·cos(π/3+α)cos(π/3-α)

      tan3a = tan a · tan(π/3+a)· tan(π/3-a)

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):三倍角公式推導(dǎo)

      sin3a

      =sin(2a+a)

      =sin2acosa+cos2asina

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):輔助角公式

      Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

      sint=B/(A^2+B^2)^(1/2)

      cost=A/(A^2+B^2)^(1/2)

      tant=B/A

      Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降冪公式

      sin^2(α)=(1-cos(2α))/2=versin(2α)/2

      cos^2(α)=(1+cos(2α))/2=covers(2α)/2

      tan^2(α)=(1-cos(2α))/(1+cos(2α))

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):推導(dǎo)公式

      tanα+cotα=2/sin2α

      tanα-cotα=-2cot2α

      1+cos2α=2cos^2α

      1-cos2α=2sin^2α

      1+sinα=(sinα/2+cosα/2)^2

      =2sina(1-sin2a)+(1-2sin2a)sina

      =3sina-4sin3a

      cos3a

      =cos(2a+a)

      =cos2acosa-sin2asina

      =(2cos2a-1)cosa-2(1-sin2a)cosa

      =4cos3a-3cosa

      sin3a=3sina-4sin3a

      =4sina(3/4-sin2a)

      =4sina[(√3/2)2-sin2a]

      =4sina(sin260°-sin2a)

      =4sina(sin60°+sina)(sin60°-sina)

      =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

      =4sinasin(60°+a)sin(60°-a)

      cos3a=4cos3a-3cosa

      =4cosa(cos2a-3/4)

      =4cosa[cos2a-(√3/2)2]

      =4cosa(cos2a-cos230°)

      =4cosa(cosa+cos30°)(cosa-cos30°)

      =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

      =-4cosasin(a+30°)sin(a-30°)

      =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

      =-4cosacos(60°-a)[-cos(60°+a)]

      =4cosacos(60°-a)cos(60°+a)

      上述兩式相比可得

      tan3a=tanatan(60°-a)tan(60°+a)

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):半角公式

      tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

      cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

      sin^2(a/2)=(1-cos(a))/2

      cos^2(a/2)=(1+cos(a))/2

      tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和

      sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

      cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

      tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):兩角和差

      cos(α+β)=cosα·cosβ-sinα·sinβ

      cos(α-β)=cosα·cosβ+sinα·sinβ

      sin(α±β)=sinα·cosβ±cosα·sinβ

      tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

      tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):和差化積

      sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

      sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

      cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

      cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

      tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

      tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):積化和差

      sinαsinβ = [cos(α-β)-cos(α+β)] /2

      cosαcosβ = [cos(α+β)+cos(α-β)]/2

      sinαcosβ = [sin(α+β)+sin(α-β)]/2

      cosαsinβ = [sin(α+β)-sin(α-β)]/2

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):誘導(dǎo)公式

      sin(-α) = -sinα

      cos(-α) = cosα

      tan (—a)=-tanα

      sin(π/2-α) = cosα

      cos(π/2-α) = sinα

      sin(π/2+α) = cosα

      cos(π/2+α) = -sinα

      sin(π-α) = sinα

      cos(π-α) = -cosα

      sin(π+α) = -sinα

      cos(π+α) = -cosα

      tanA= sinA/cosA

      tan(π/2+α)=-cotα

      tan(π/2-α)=cotα

      tan(π-α)=-tanα

      tan(π+α)=tanα

      誘導(dǎo)公式記背訣竅:奇變偶不變,符號(hào)看象限

      萬(wàn)能公式

      sinα=2tan(α/2)/[1+tan^(α/2)]

      cosα=[1-tan^(α/2)]/1+tan^(α/2)]

      tanα=2tan(α/2)/[1-tan^(α/2)]

      高中數(shù)學(xué)三角函數(shù)知識(shí)點(diǎn)總結(jié):其它公式

      (1)(sinα)^2+(cosα)^2=1

      (2)1+(tanα)^2=(secα)^2

      (3)1+(cotα)^2=(cscα)^2

      證明下面兩式,只需將一式,左右同除(sinα)^2,第二個(gè)除(cosα)^2即可

      (4)對(duì)于任意非直角三角形,總有

      tanA+tanB+tanC=tanAtanBtanC

      證:

      A+B=π-C

      tan(A+B)=tan(π-C)

      (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

      整理可得

      tanA+tanB+tanC=tanAtanBtanC

      得證

      同樣可以得證,當(dāng)x+y+z=nπ(n∈Z)時(shí),該關(guān)系式也成立

      由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論

      (5)cotAcotB+cotAcotC+cotBcotC=1

      (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

      (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC

      (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC

      (9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

      cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

      sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

      tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

    熱門(mén)文章
    火车上荫蒂添的好舒服视频| 中文字幕av影视精品不卡| 国产69久久精品成人看| 国产精品欧美亚洲日本综合| 国产高清乱码女大生AV| 浪漫樱花动漫在线观看官网| 超碰在线观看免费A97| 亚洲AV无码精品午夜色蛋壳| 少女韩国电视剧在线观看完整| 久久99精品久久久久久|